scispace - formally typeset
Search or ask a question

Showing papers by "Denise M. Monack published in 2021"


Journal ArticleDOI
TL;DR: In this article, a method was proposed to control human and mouse organoid polarity in suspension culture such that the apical surface faces outward to the medium (apical-out organoids), preserving epithelial integrity, maintaining secretory and absorptive functions and allowing regulation of differentiation.
Abstract: Human epithelial organoids-3D spheroids derived from adult tissue stem cells-enable investigation of epithelial physiology and disease and host interactions with microorganisms, viruses and bioactive molecules. One challenge in using organoids is the difficulty in accessing the apical, or luminal, surface of the epithelium, which is enclosed within the organoid interior. This protocol describes a method we previously developed to control human and mouse organoid polarity in suspension culture such that the apical surface faces outward to the medium (apical-out organoids). Our protocol establishes apical-out polarity rapidly (24-48 h), preserves epithelial integrity, maintains secretory and absorptive functions and allows regulation of differentiation. Here, we provide a detailed description of the organoid polarity reversal method, compatible characterization assays and an example of an application of the technology-specifically the impact of host-microbe interactions on epithelial function. Control of organoid polarity expands the possibilities of organoid use in gastrointestinal and respiratory health and disease research.

47 citations


Journal ArticleDOI
TL;DR: In this paper, an RNA thermosensor (RNAT) was identified in the 5' untranslated region (UTR) of tviA encoded by the typhoid fever-causing bacterium Salmonella enterica serovar Typhi (S. Typhi).
Abstract: Sensing and responding to environmental signals is critical for bacterial pathogens to successfully infect and persist within hosts. Many bacterial pathogens sense temperature as an indication they have entered a new host and must alter their virulence factor expression to evade immune detection. Using secondary structure prediction, we identified an RNA thermosensor (RNAT) in the 5' untranslated region (UTR) of tviA encoded by the typhoid fever-causing bacterium Salmonella enterica serovar Typhi (S. Typhi). Importantly, tviA is a transcriptional regulator of the critical virulence factors Vi capsule, flagellin, and type III secretion system-1 expression. By introducing point mutations to alter the mRNA secondary structure, we demonstrate that the 5' UTR of tviA contains a functional RNAT using in vitro expression, structure probing, and ribosome binding methods. Mutational inhibition of the RNAT in S. Typhi causes aberrant virulence factor expression, leading to enhanced innate immune responses during infection. In conclusion, we show that S. Typhi regulates virulence factor expression through an RNAT in the 5' UTR of tviA. Our findings demonstrate that limiting inflammation through RNAT-dependent regulation in response to host body temperature is important for S. Typhi's "stealthy" pathogenesis.

15 citations


Posted ContentDOI
13 Jun 2021-bioRxiv
TL;DR: In this paper, a subset of metabolic changes, including plasma arginine depletion, match the plasma metabolomes of human malaria patients, suggesting new connections between pathology and metabolism in human malaria.
Abstract: Infections disrupt host metabolism, but the factors that dictate the nature and magnitude of metabolic change are incompletely characterized. To determine how host metabolism changes in relation to disease severity in murine malaria, we performed plasma metabolomics on eight Plasmodium chabaudi-infected mouse strains with diverse disease phenotypes. We identified plasma metabolic biomarkers for both the nature and severity of different malarial pathologies. A subset of metabolic changes, including plasma arginine depletion, match the plasma metabolomes of human malaria patients, suggesting new connections between pathology and metabolism in human malaria. In our malarial mice, liver damage, which releases hepatic arginase-1 (Arg1) into circulation, correlated with plasma arginine depletion. We confirmed that hepatic Arg1 was the primary source of increased plasma arginase activity in our model, which motivates further investigation of liver damage in human malaria patients. More broadly, our approach shows how leveraging phenotypic diversity can identify and validate relationships between metabolism and the pathophysiology of infectious disease. ImportanceMalaria is a severe and sometimes fatal infectious disease endemic to tropical and subtropical regions. Effective vaccines against malaria-causing Plasmodium parasites remain elusive, and malaria treatments often fail to prevent severe disease. Small molecules that target host metabolism have recently emerged as candidates for therapeutics in malaria and other diseases. However, our limited understanding of how metabolites affect pathophysiology limits our ability to develop new metabolite therapies. By providing a rich dataset of metabolite-pathology correlations, and by validating one of those correlations, our work is an important step toward harnessing metabolism to mitigate disease. Specifically, we showed that liver damage in P. chabaudi-infected mice releases hepatic arginase-1 into circulation, where it may deplete plasma arginine, a candidate malaria therapeutic that mitigates vascular stress. Our data suggest that liver damage may confound efforts to increase levels of arginine in human malaria patients.