scispace - formally typeset
Search or ask a question

Showing papers by "Deyu Li published in 2005"


Journal ArticleDOI
Choongho Yu1, Li Shi1, Zhen Yao1, Deyu Li1, Arunava Majumdar1 
TL;DR: It is observed that the thermal conductance of a 2.76-microm-long individual suspended single-wall carbon nanotube (SWCNT) was very close to the calculated ballistic thermal conductances of a 1-nm-diameter SWCNT without showing signatures of phonon-phonon Umklapp scattering for temperatures between 110 and 300 K.
Abstract: We have observed experimentally that the thermal conductance of a 2.76-μm-long individual suspended single-wall carbon nanotube (SWCNT) was very close to the calculated ballistic thermal conductance of a 1-nm-diameter SWCNT without showing signatures of phonon−phonon Umklapp scattering for temperatures between 110 and 300 K. Although the observed thermopower of the SWCNT can be attributed to a linear diffusion contribution and a constant phonon drag effect, there could be an additional contact effect.

809 citations


Journal ArticleDOI
TL;DR: The results illustrate the efficacy of field-effect control in nanofluidics, which could have broad implications on integrated nanof LU circuits for manipulation of ions and biomolecules in sub-femtoliter volumes.
Abstract: We report a nanofluidic transistor based on a metal-oxide-solution (MOSol) system that is similar to a metal-oxide-semiconductor field-effect transistor (MOSFET). Using a combination of fluorescence and electrical measurements, we demonstrate that gate voltage modulates the concentration of ions and molecules in the channel and controls the ionic conductance. Our results illustrate the efficacy of field-effect control in nanofluidics, which could have broad implications on integrated nanofluidic circuits for manipulation of ions and biomolecules in sub-femtoliter volumes.

624 citations


Journal ArticleDOI
TL;DR: Inorganic nanotubes were successfully integrated with microfluidic systems to create nanofluidic devices for single DNA molecule sensing and a transition from current decrease to current enhancement during translocation was observed on changing the buffer concentration, suggesting interplay between electrostatic charge and geometric blockage effects.
Abstract: Inorganic nanotubes were successfully integrated with microfluidic systems to create nanofluidic devices for single DNA molecule sensing. Inorganic nanotubes are unique in their high aspect ratio and exhibit translocation characteristics in which the DNA is fully stretched. Transient changes of ionic current indicate DNA translocation events. A transition from current decrease to current enhancement during translocation was observed on changing the buffer concentration, suggesting interplay between electrostatic charge and geometric blockage effects. These inorganic nanotube nanofluidic devices represent a new platform for the study of single biomolecule translocation with the potential for integration into nanofluidic circuits.

316 citations


Journal ArticleDOI
TL;DR: In this article, Monte Carlo simulation is applied to investigate phonon transport in single crystalline Si nanowires, and two different phonon dispersions, one from experimental measurements on bulk Si and the other solved from elastic wave theory, are adopted in the simulation.
Abstract: Monte Carlo simulation is applied to investigate phonon transport in single crystalline Si nanowires. Phonon-phonon normal (N) and Umklapp (U) scattering processes are modeled with a genetic algorithm to satisfy energy and momentum conservation. The scattering rates of N and U scattering processes are found from first-order perturbation theory. The thermal conductivity of Si nanowires is simulated and good agreement is achieved with recent experimental data. In order to study the confinement effects on phonon transport in nanowires, two different phonon dispersions, one from experimental measurements on bulk Si and the other solved from elastic wave theory, are adopted in the simulation. The discrepancy between simulations using different phonon dispersions increases as the nanowire diameter decreases, which suggests that the confinement effect is significant when the nanowire diameter approaches tens of nanometers. It is found that the U scattering probability in Si nanowires is higher than that in hulk Si due to the decrease of the frequency gap between different modes and the reduced phonon group velocity. Simulation results suggest that the dispersion relation for nanowires obtained from elasticity theory should be used to evaluate nanowire thermal conductivity as the nanowire diameter is reduced to the sub-100 nm scale.

225 citations


Journal ArticleDOI
TL;DR: In this article, the dependence of superlattice thermal conductivity on period length is investigated by molecular dynamics simulation, and the simulation results are consistent with phonon transmission coefficient calculations, which indicate increased stop bandwidth and thus strongly enhanced Bragg scattering.
Abstract: The dependence of superlattice thermal conductivity on period length is investigated by molecular dynamics simulation. For perfectly lattice matched superlattices, a minimum is observed when the period length is of the order of the effective phonon mean free path. As temperature decreases and interatomic potential strength increases, the position of the minimum shifts to larger period lengths. The depth of the minimum is strongly enhanced as mass and interatomic potential ratios of the constituent materials increase. The simulation results are consistent with phonon transmission coefficient calculations, which indicate increased stop bandwidth and thus strongly enhanced Bragg scattering for the same conditions under which strong reductions in thermal conductivity are found. When nonideal interfaces are created by introducing a 4% lattice mismatch, the minimum disappears and thermal conductivity increases monotonically with period length. This result may explain why minimum thermal conductivity has not been observed in a large number of experimental studies.

192 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss phonon transport in semiconductor superlattices and nanowires with regards to applications in solid-state cooling devices, and reveal the relative importance of acoustic impedance mismatch, alloy scattering, and crystalline imperfections at the interfaces.
Abstract: Low-dimensional nanostructured materials are promising candidates for high efficiency solid-state cooling devices based on the Peltier effect. Thermal transport in these low-dimensional materials is a key factor for device performance since the thermoelectric figure of merit is inversely proportional to thermal conductivity. Therefore, understanding thermal transport in nanostructured materials is crucial for engineering high performance devices. Thermal transport in semiconductors is dominated by lattice vibrations called phonons, and phonon transport is often markedly different in nanostructures than it is in bulk materials for a number of reasons. First, as the size of a structure decreases, its surface area to volume ratio increases, thereby increasing the importance of boundaries and interfaces. Additionally, at the nanoscale the characteristic length of the structure approaches the phonon wavelength, and other interesting phenomena such as dispersion relation modification and quantum confinement may arise and further alter the thermal transport. We discuss phonon transport in semiconductor superlattices and nanowires with regards to applications in solid-state cooling devices. Systematic studies on periodic multilayers called superlattices disclose the relative importance of acoustic impedance mismatch, alloy scattering, and crystalline imperfections at the interfaces. Thermal conductivity measurements of monocrystalline silicon nanowires of different diameters reveal the strong effects of phonon-boundary scattering

51 citations



Proceedings ArticleDOI
01 Jan 2005
TL;DR: In this paper, a Monte Carlo simulation was developed and applied to investigate phonon transport in single crystalline Si nanowires, and two different phonon dispersions, one based on bulk Si and the other solved from the elastic wave theory for nanowsires, were adopted in the simulation.
Abstract: One-dimensional (1D) materials such as various kinds of nanowires and nanotubes have attracted considerable attention due to their potential applications in electronic and energy conversion devices. The thermal transport phenomena in these nanowires and nanotubes could be significantly different from that in bulk material due to boundary scattering, phonon dispersion relation change, and quantum confinement. It is very important to understand the thermal transport phenomena in these materials so that we can apply them in the thermal design of microelectronic, photonic, and energy conversion devices. While intensive experimental efforts are being carried out to investigate the thermal transport in nanowires and nanotube, an accurate numerical prediction can help the understanding of phonon scattering mechanisms, which is of fundamental theoretical significance. A Monte Carlo simulation was developed and applied to investigate phonon transport in single crystalline Si nanowires. The Phonon-phonon Normal (N) and Umklapp (U) scattering processes were modeled with a genetic algorithm to satisfy both the energy and the momentum conservation. The scattering rates of N and U scattering processes were given from the first perturbation theory. Ballistic phonon transport was modeled with the code and the numerical results fit the theoretical prediction very well. The thermal conductivity of bulk Si was then simulated and good agreement was achieved with the experimental data. Si nanowire thermal conductivity was then studied and compared with some recent experimental results. In order to study the confinement effects on phonon transport in nanowires, two different phonon dispersions, one based on bulk Si and the other solved from the elastic wave theory for nanowires, were adopted in the simulation. The discrepancy from the simulations based on different phonon dispersions increases as the nanowire diameter decreases, which suggests that the confinement effect is significant when the nanowire diameter goes down to tens nanometer range. It was found that the U scattering probability engaged in Si nanowires was increased from that in bulk Si due to the decrease of the frequency gap between different modes and the reduced phonon group velocity. Simulation results suggest that the dispersion relation for nanowire solved from the elasticity theory should be used to evaluate nanowire thermal conductivity as the nanowire diameter reduced to tens nanometer.Copyright © 2005 by ASME