scispace - formally typeset
Search or ask a question

Showing papers by "Domingo Barber published in 2022"


Journal ArticleDOI
TL;DR: In this paper , the authors studied the intracellular transit of two magnetic nanoparticles with identical iron oxide core size but with two distinct coatings: 3-aminopropyl-trietoxysilane (APS) and dimercaptosuccinic acid (DMSA).

16 citations


Journal ArticleDOI
04 Jul 2022-Allergy
TL;DR: Different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD are reviewed.
Abstract: Allergic diseases are allergen‐induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T‐cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate‐like lymphoid cells, alarmins, IL‐4, IL‐5, IL‐9, IL‐13 and IL‐17).

11 citations


Journal ArticleDOI
17 Jun 2022-Allergy
TL;DR: The potential of omics strategies in understanding disease pathophysiology and key tools to reach unmet needs in allergy precision medicine, such as successful patients’ stratification, accurate disease prognosis, and prediction of treatment efficacy and successful prevention measures are highlighted.
Abstract: Allergic diseases and asthma are heterogenous chronic inflammatory conditions with several distinct complex endotypes. Both environmental and genetic factors can influence the development and progression of allergy. Complex pathogenetic pathways observed in allergic disorders present a challenge in patient management and successful targeted treatment strategies. The increasing availability of high‐throughput omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics allows studying biochemical systems and pathophysiological processes underlying allergic responses. Additionally, omics techniques present clinical applicability by functional identification and validation of biomarkers. Therefore, finding molecules or patterns characteristic for distinct immune‐inflammatory endotypes, can subsequently influence its development, progression, and treatment. There is a great potential to further increase the effectiveness of single omics approaches by integrating them with other omics, and nonomics data. Systems biology aims to simultaneously and longitudinally understand multiple layers of a complex and multifactorial disease, such as allergy, or asthma by integrating several, separated data sets and generating a complete molecular profile of the condition. With the use of sophisticated biostatistics and machine learning techniques, these approaches provide in‐depth insight into individual biological systems and will allow efficient and customized healthcare approaches, called precision medicine. In this EAACI Position Paper, the Task Force “Omics technologies in allergic research” broadly reviewed current advances and applicability of omics techniques in allergic diseases and asthma research, with a focus on methodology and data analysis, aiming to provide researchers (basic and clinical) with a desk reference in the field. The potential of omics strategies in understanding disease pathophysiology and key tools to reach unmet needs in allergy precision medicine, such as successful patients’ stratification, accurate disease prognosis, and prediction of treatment efficacy and successful prevention measures are highlighted.

11 citations


Journal ArticleDOI
11 Feb 2022-Allergy
TL;DR: The vaccine exerts its effects through immune modulation, induces and amplifies the response against the severe acute respiratory syndrome coronavirus (SARS‐CoV‐2), so as there may be a discernible interference between these treatment modalities, recommendations on how they should be applied in sequence are expected.
Abstract: Immune modulation is a key therapeutic approach for allergic diseases, asthma and autoimmunity. It can be achieved in an antigen‐specific manner via allergen immunotherapy (AIT) or in an endotype‐driven approach using biologicals that target the major pathways of the type 2 (T2) immune response: immunoglobulin (Ig)E, interleukin (IL)‐5 and IL‐4/IL‐13 or non‐type 2 response: anti‐cytokine antibodies and B‐cell depletion via anti‐CD20. Coronavirus disease 2019 (COVID‐19) vaccination provides an excellent opportunity to tackle the global pandemics and is currently being applied in an accelerated rhythm worldwide. The vaccine exerts its effects through immune modulation, induces and amplifies the response against the severe acute respiratory syndrome coronavirus (SARS‐CoV‐2). Thus, as there may be a discernible interference between these treatment modalities, recommendations on how they should be applied in sequence are expected.

9 citations


Journal ArticleDOI
TL;DR: This review presents the latest advances with respect to the human microbiota in the literature, focusing on the intestinal, cutaneous, and respiratory microbiota, and discusses the relationship between the microbiome and the immune system, with emphasis on allergic diseases.
Abstract: The role of the microbiome in the molecular mechanisms underlying allergy has become highly relevant in recent years. Studies are increasingly suggesting that altered composition of the microbiota, or dysbiosis, may result in local and systemic alteration of the immune response to specific allergens. In this regard, a link has been established between lung microbiota and respiratory allergy, between skin microbiota and atopic dermatitis, and between gut microbiota and food allergy. The composition of the human microbiota is dynamic and depends on host-associated factors such as diet, diseases, and lifestyle. Omics are the techniques of choice for the analysis and understanding of the microbiota. Microbiota analysis techniques have advanced considerably in recent decades, and the need for multiple approaches to explore and comprehend multifactorial diseases, including allergy, has increased. Thus, more and more studies are proposing mechanisms for intervention in the microbiota. In this review, we present the latest advances with respect to the human microbiota in the literature, focusing on the intestinal, cutaneous, and respiratory microbiota. We discuss the relationship between the microbiome and the immune system, with emphasis on allergic diseases. Finally, we discuss the main technologies for the study of the microbiome and interventions targeting the microbiota for prevention of allergy.

5 citations


Journal ArticleDOI
TL;DR: A protocol based on plateletpheresis is designed to obtain platelet‐Rich Plasma (PRP), Platelet‐Poor Plasma (PPP) as well as CD3+ and CD14+ cells matched samples from a waste platelet pheresis product for immunological studies.
Abstract: In previous studies with peripheral blood cells, platelet factors were found to be associated with severe allergic phenotypes. A reliable method yielding highly concentrated and pure platelet samples is usually not available for immunological studies. Plateletpheresis is widely used in the clinics for donation purposes. In this study, we designed a protocol based on plateletpheresis to obtain Platelet‐Rich Plasma (PRP), Platelet‐Poor Plasma (PPP) as well as CD3+ and CD14+ cells matched samples from a waste plateletpheresis product for immunological studies.

4 citations


Journal ArticleDOI
TL;DR: In this paper , three different MNP coatings were analyzed, each conferring the identical 12 nm iron oxide cores with different physicochemical characteristics: 3-aminopropyl-triethoxysilane (APS), dextran (DEX), and dimercaptosuccinic acid (DMSA).
Abstract: Abstract Background The surface coating of iron oxide magnetic nanoparticle (MNPs) drives their intracellular trafficking and degradation in endolysosomes, as well as dictating other cellular outcomes. As such, we assessed whether MNP coatings might influence their biodistribution, their accumulation in certain organs and their turnover therein, processes that must be understood in vivo to optimize the design of nanoformulations for specific therapeutic/diagnostic needs. Results In this study, three different MNP coatings were analyzed, each conferring the identical 12 nm iron oxide cores with different physicochemical characteristics: 3-aminopropyl-triethoxysilane (APS), dextran (DEX), and dimercaptosuccinic acid (DMSA). When the biodistribution of these MNPs was analyzed in C57BL/6 mice, they all mainly accumulated in the spleen and liver one week after administration. The coating influenced the proportion of the MNPs in each organ, with more APS-MNPs accumulating in the spleen and more DMSA-MNPs accumulating in the liver, remaining there until they were fully degraded. The changes in the physicochemical properties of the MNPs (core size and magnetic properties) was also assessed during their intracellular degradation when internalized by two murine macrophage cell lines. The decrease in the size of the MNPs iron core was influenced by their coating and the organ in which they accumulated. Finally, MNP degradation was analyzed in the liver and spleen of C57BL/6 mice from 7 days to 15 months after the last intravenous MNP administration. Conclusions The MNPs degraded at different rates depending on the organ and their coating, the former representing the feature that was fundamental in determining the time they persisted. In the liver, the rate of degradation was similar for all three coatings, and it was faster than in the spleen. This information regarding the influence of coatings on the in vivo degradation of MNPs will help to choose the best coating for each biomedical application depending on the specific clinical requirements. Graphical Abstract

4 citations


Journal ArticleDOI
TL;DR: The immunological mechanisms underlying AIT are reviewed with a focus on MC desensitization and AIT-induced adverse reactions, and the identification of novel biomarkers with predictive potential that could improve the rational use of AIT is discussed.
Abstract: Allergen immunotherapy (AIT) is the only treatment with disease-transforming potential for allergic disorders. The immunological mechanisms associated with AIT can be divided along time in two phases: short-term, involving mast cell (MC) desensitization; and long-term, with a regulatory T cell (Treg) response with significant reduction of eosinophilia. This regulatory response is induced in about 70% of patients and lasts up to 3 years after AIT cessation. MC desensitization is characteristic of the initial phase of AIT and it is often related to its success. Yet, the molecular mechanisms involved in allergen-specific MC desensitization, or the connection between MC desensitization and the development of a Treg arm, are poorly understood. The major AIT challenges are its long duration, the development of allergic reactions during AIT, and the lack of efficacy in a considerable proportion of patients. Therefore, reaching a better understanding of the immunology of AIT will help to tackle these short-comings and, particularly, to predict responder-patients. In this regard, omics strategies are empowering the identification of predictive and follow-up biomarkers in AIT. Here, we review the immunological mechanisms underlying AIT with a focus on MC desensitization and AIT-induced adverse reactions. Also, we discuss the identification of novel biomarkers with predictive potential that could improve the rational use of AIT.

3 citations


Journal ArticleDOI
TL;DR: This review aims to compile recent knowledge regarding the histological structure and immunological function of the epithelial barrier and to shed light on the role of this compartment in the onset, and progression of allergic diseases.
Abstract: The epithelial barrier has been classically considered as only the first line of defense against irritants, pathogens, and allergens, but it is now known that it also plays an essential role in the immunological response against exogenous agents. In fact, recent reports postulate the epithelial barrier hypothesis as a possible explanation for the increasing incidence and severity of allergic diseases. The epithelial barrier preserves the isolation of the inner tissues from potential external threats. Moreover, a coordinated interaction between epithelial and immune cells ensures the unique immune response taking place in mucosal tissues and that is has been reported to be dysregulated in allergic diseases. Herein, we and others have demonstrated that in severe allergic phenotypes, the epithelial barrier experiments several histological modifications and increased in immune cells infiltration, leading to its dysfunction. This is common in atopic dermatitis, asthma, and/or food allergy. However, the precise role of the epithelial barrier in the mucosal biology during allergic diseases progression is not well understood yet. In this review, we aim to compile recent knowledge regarding the histological structure and immunological function of the epithelial barrier and to shed light on the role of this compartment in the onset, and progression of allergic diseases.

3 citations


Journal ArticleDOI
TL;DR: This work presents the development of a novel targeted metabolomic methodology for the analysis of 36 metabolites related to allergic inflammation, including mostly sphingolipid, lysophospholipids, amino acids, and those of energy metabolism previously identified in non-targeted studies.
Abstract: The transition from mild to severe allergic phenotypes is still poorly understood and there is an urgent need of incorporating new therapies, accompanied by personalized diagnosis approaches. This work presents the development of a novel targeted metabolomic methodology for the analysis of 36 metabolites related to allergic inflammation, including mostly sphingolipids, lysophospholipids, amino acids, and those of energy metabolism previously identified in non-targeted studies. The methodology consisted of two complementary chromatography methods, HILIC and reversed-phase. These were developed using liquid chromatography, coupled to triple quadrupole mass spectrometry (LC-QqQ-MS) in dynamic multiple reaction monitoring (dMRM) acquisition mode and were validated using ICH guidelines. Serum samples from two clinical models of allergic asthma patients were used for method application, which were as follows: (1) corticosteroid-controlled (ICS, n = 6) versus uncontrolled (UC, n = 4) patients, and immunotherapy-controlled (IT, n = 23) versus biologicals-controlled (BIO, n = 12) patients. The results showed significant differences mainly in lysophospholipids using univariate analyses in both models. Multivariate analysis for model 1 was able to distinguish both groups, while for model 2, the results showed the correct classification of all BIO samples within their group. Thus, this methodology can be of great importance for further understanding the role of these metabolites in allergic diseases as potential biomarkers for disease severity and for predicting patient treatment response.

2 citations


Journal ArticleDOI
TL;DR: In this paper , the potential of using iron oxide nanoparticles (IONPs) coated with biocompatible molecules like dimercaptosuccinic acid (DMSA), 3-aminopropyl triethoxysilane (APS) or carboxydextran (FeraSpin™ R) to treat and/or prevent SARS-CoV-2 infection was analyzed.
Abstract: Coronaviruses usually cause mild respiratory disease in humans but as seen recently, some human coronaviruses can cause more severe diseases, such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the global spread of which has resulted in the ongoing coronavirus pandemic.In this study we analyzed the potential of using iron oxide nanoparticles (IONPs) coated with biocompatible molecules like dimercaptosuccinic acid (DMSA), 3-aminopropyl triethoxysilane (APS) or carboxydextran (FeraSpin™ R), as well as iron oxyhydroxide nanoparticles (IOHNPs) coated with sucrose (Venofer®), or iron salts (ferric ammonium citrate -FAC), to treat and/or prevent SARS-CoV-2 infection. At non-cytotoxic doses, IONPs and IOHNPs impaired virus replication and transcription, and the production of infectious viruses in vitro, either when the cells were treated prior to or after infection, although with different efficiencies. Moreover, our data suggest that SARS-CoV-2 infection affects the expression of genes involved in cellular iron metabolism. Furthermore, the treatment of cells with IONPs and IOHNPs affects oxidative stress and iron metabolism to different extents, likely influencing virus replication and production. Interestingly, some of the nanoparticles used in this work have already been approved for their use in humans as anti-anemic treatments, such as the IOHNP Venofer®, and as contrast agents for magnetic resonance imaging in small animals like mice, such as the FeraSpin™ R IONP.Therefore, our results suggest that IONPs and IOHNPs may be repurposed to be used as prophylactic or therapeutic treatments in order to combat SARS-CoV-2 infection.

Journal ArticleDOI
TL;DR: The results show that allergy induces the activation of specific inflammatory pathways, such as the PLA2 pathway, which supports its role in the development of an uncontrolled asthma phenotype and provides evidences to better understand the contribution of allergy to the establishment of a severe uncontrolled phenotype.
Abstract: Asthma is a multifactorial, heterogeneous disease that has a challenging management. It can be divided in non-allergic and allergic (usually associated with house dust mites (HDM) sensitization). There are several treatments options for asthma (corticosteroids, bronchodilators, antileukotrienes, anticholinergics,…); however, there is a subset of patients that do not respond to any of the treatments, who can display either a T2 or a non-T2 phenotype. A deeper understanding of the differential mechanisms underlying each phenotype will help to decipher the contribution of allergy to the acquisition of this uncontrolled severe phenotype. Here, we aim to elucidate the biological pathways associated to allergy in the uncontrolled severe asthmatic phenotype. To do so, twenty-three severe uncontrolled asthmatic patients both with and without HDM-allergy were recruited from Hospital Universitario de Gran Canaria Dr. Negrin. A metabolomic fingerprint was obtained through liquid chromatography coupled to mass spectrometry, and identified metabolites were associated with their pathways. 9/23 patients had uncontrolled HDM-allergic asthma (UCA), whereas 14 had uncontrolled, non-allergic asthma (UCNA). 7/14 (50%) of the UCNA patients had Aspirin Exacerbated Respiratory Disease. There were no significant differences regarding gender or body mass index; but there were significant differences in age and onset age, which were higher in UCNA patients; and in total IgE, which was higher in UCA. The metabolic fingerprint revealed that 103 features were significantly different between UCNA and UCA (p < 0.05), with 97 being increased in UCA and 6 being decreased. We identified lysophosphocholines (LPC) 18:2, 18:3 and 20:4 (increased in UCA patients); and deoxycholic acid and palmitoleoylcarnitine (decreased in UCA). These metabolites were related with a higher activation of phospholipase A2 (PLA2) and other phospholipid metabolism pathways. Our results show that allergy induces the activation of specific inflammatory pathways, such as the PLA2 pathway, which supports its role in the development of an uncontrolled asthma phenotype. There are also clinical differences, such as higher levels of IgE and earlier onset ages for the allergic asthmatic group, as expected. These results provide evidences to better understand the contribution of allergy to the establishment of a severe uncontrolled phenotype.

Journal ArticleDOI
17 Dec 2022-Allergy
TL;DR: In this paper , the onset and perpetuation of severe allergic patients remain unknown, and the mechanism that causes the onset of inflammation in severe allergic individuals is not known, although previous studies suggested that severe allergic inflammation is linked to platelet dysfunction.
Abstract: Mechanisms causing the onset and perpetuation of inflammation in severe allergic patients remain unknown. Our previous studies suggested that severe allergic inflammation is linked to platelet dysfunction.

Journal ArticleDOI
TL;DR: In this paper , the authors summarize the key adaptive, innate, humoral, and metabolic advances in biomarker identification in response to allergen immunotherapy (AIT), which provides longterm clinical efficacy, especially during peak allergy season.
Abstract: Allergic rhinitis is an IgE-mediated inflammation that remains a clinical challenge, affecting 40% of the UK population with a wide range of severity from nasal discomfort to life-threatening anaphylaxis. It can be managed by pharmacotherapeutics and in selected patients by allergen immunotherapy (AIT), which provides long-term clinical efficacy, especially during peak allergy season. However, there are no definitive biomarkers for AIT efficacy. Here, we aim to summarize the key adaptive, innate, humoral, and metabolic advances in biomarker identification in response to AIT. Mechanisms of efficacy consist of an immune deviation towards TH1-secreting IFN-γ, as well as an induction of IL10+ cTFR and TREG have been observed. TH2 cells undergo exhaustion after AIT due to chronic allergen exposure and correlates with the exhaustion markers PD-1, CTLA-4, TIGIT, and LAG3. IL10+ DCREG expressing C1Q and STAB are induced. KLRG1+ IL10+ ILC2 were shown to be induced in AIT in correlation with efficacy. BREG cells secreting IL-10, IL-35, and TGF-β are induced. Blocking antibodies IgG, IgA, and IgG4 are increased during AIT; whereas inflammatory metabolites, such as eicosanoids, are reduced. There are multiple promising biomarkers for AIT currently being evaluated. A panomic approach is essential to better understand cellular, molecular mechanisms and their correlation with clinical outcomes. Identification of predictive biomarkers of AIT efficacy will hugely impact current practice allowing physicians to select eligible patients that are likely to respond to treatment as well as improve patients’ compliance to complete the course of treatment.

Journal ArticleDOI
TL;DR: The absence of CD8+ Tregs in two lupus-prone murine models and a greater Helios downregulation on diseased mice could make Helios a versatile maker across the T-cell repertoire that is capable of differentiating l upus disease states.
Abstract: T-cell–mediated autoimmunity reflects an imbalance in this compartment that is not restored by tolerogenic immune cells, e.g., regulatory T cells or tolerogenic dendritic cells (tolDCs). Although studies into T-cell equilibrium have mainly focused on regulatory CD4+FoxP3+ T cells (CD4+ Tregs), recent findings on the lesser known CD8+ Tregs (CD44+CD122+Ly49+) have highlighted their non-redundant role in regulating lupus-like disease and their regulatory phenotype facilitated by the transcription factor Helios in mice and humans. However, there are still remaining questions about Helios regulation and dynamics in different autoimmune contexts. Here, we show the absence of CD8+ Tregs in two lupus-prone murine models: MRL/MPJ and MRL/lpr, in comparison with a non-prone mouse strain like C57BL/6. We observed that all MRL animals showed a dramatically reduced population of CD8+ Tregs and a greater Helios downregulation on diseased mice. Helios induction was detected preferentially on CD8+ T cells from OT-I mice co-cultured with tolDCs from C57BL/6 but not in MRL animals. Furthermore, the Helios profile was also altered in other relevant T-cell populations implicated in lupus, such as CD4+ Tregs, conventional CD4+, and double-negative T cells. Together, these findings could make Helios a versatile maker across the T-cell repertoire that is capable of differentiating lupus disease states.