scispace - formally typeset
Search or ask a question

Showing papers by "Dorothea Fiedler published in 2023"


Journal ArticleDOI
TL;DR: In this paper , inositol pyrophosphates interact with SPX domains of subunits Vtc2 and Vtc3 to control the activity of the VTC complex, and ligand binding induces reorientation and exposes the modifiable helix α7.
Abstract: Abstract Many proteins involved in eukaryotic phosphate homeostasis are regulated by SPX domains. In yeast, the vacuolar transporter chaperone (VTC) complex contains two such domains, but mechanistic details of its regulation are not well understood. Here, we show at the atomic level how inositol pyrophosphates interact with SPX domains of subunits Vtc2 and Vtc3 to control the activity of the VTC complex. Vtc2 inhibits the catalytically active VTC subunit Vtc4 by homotypic SPX–SPX interactions via the conserved helix α1 and the previously undescribed helix α7. Binding of inositol pyrophosphates to Vtc2 abrogates this interaction, thus activating the VTC complex. Accordingly, VTC activation is also achieved by site-specific point mutations that disrupt the SPX–SPX interface. Structural data suggest that ligand binding induces reorientation of helix α1 and exposes the modifiable helix α7, which might facilitate its post-translational modification in vivo. The variable composition of these regions within the SPX domain family might contribute to the diversified SPX functions in eukaryotic phosphate homeostasis.

1 citations


Journal ArticleDOI
TL;DR: In this article , the antifungal drug itraconazole has been repurposed to anti-angiogenic agent, but the mechanisms of action have been elusive.

1 citations


Journal ArticleDOI
TL;DR: In this article , a real-time NMR analysis of sialic acid biosynthesis was performed using recombinant enzymes, in particular using UDP-N-acetylglucosamine 2-epimerase (GNE) or Nacetylmannosamine kinase (MNK), in cytosolic rat liver extract.
Abstract: Sialic acids are part of the outermost component of the glycocalyx of all vertebrates; as such, they are fundamental markers in physiological and pathological processes. In this study, we introduce a real-time assay to monitor individual enzymatic steps of sialic acid biosynthesis, either with recombinant enzymes, in particular using UDP-N-acetylglucosamine 2-epimerase (GNE) or N-acetylmannosamine kinase (MNK), or in cytosolic rat liver extract. Using state-of-the-art NMR techniques, we are able to follow the characteristic signal of the N-acetyl methyl group, which displays different chemical shifts for the biosynthesis intermediates UDP-N-acetylglucosamine, N-acetylmannosamine (and its 6-phosphate) and N-acetylneuraminic acid (and its 9-phosphate). Pseudo 2- and 3-D NMR demonstrated that in rat liver cytosolic extract, the phosphorylation reaction of MNK is exclusive for N-acetylmannosamine generated by GNE. Thus, we speculate that phosphorylation of this sugar from other sources (e.g. external application to cells) or N-acetylmannosamine derivatives often applied in metabolic glycoengineering is not conducted by MNK but by a yet unknown sugar kinase. Competition experiments with the most prevalent neutral carbohydrates demonstrated that of these, only N-acetylglucosamine slowed N-acetylmannosamine phosphorylation kinetics, suggesting an N-acetylglucosamine-preferring kinase as the acting enzyme.

Posted ContentDOI
26 Apr 2023-bioRxiv
TL;DR: Inositol hexakisphosphate kinases (IP6Ks) are emerging as relevant pharmacological targets because a multitude of disease-related phenotypes has been associated with their function as discussed by the authors .
Abstract: Inositol hexakisphosphate kinases (IP6Ks) are emerging as relevant pharmacological targets because a multitude of disease-related phenotypes has been associated with their function. While the development of potent IP6K inhibitors is gaining momentum, a pharmacological tool to distinguish the mammalian isozymes is still lacking. Here, we implemented an analog-sensitive approach for IP6Ks and performed a high-throughput screen to identify suitable lead compounds. The most promising hit, FMP-201300, exhibited high potency and selectivity towards the unique valine gatekeeper mutants of IP6K1 and IP6K2, compared to the respective wild-type kinases. Biochemical validation experiments revealed an allosteric mechanism of action that was corroborated by HDX-MS measurements. The latter analysis suggested that displacement of the αC helix, caused by the gatekeeper mutation, facilitates the binding of FMP-201300 to an allosteric pocket adjacent to the ATP binding site. FMP-201300 therefore serves as a valuable springboard for the further development of compounds that can selectively target the three mammalian IP6Ks; either as analog-sensitive kinase inhibitors or as an allosteric lead compound for the wild-type kinases.

Journal ArticleDOI
TL;DR: Inositol pyrophosphates (PP-InsPs) are a functionally diverse family of eukaryotic molecules that deploy a highly-specialized array of phosphate groups as a combinatorial cell-signaling code as discussed by the authors .
Abstract: Inositol pyrophosphates (PP-InsPs); are a functionally diverse family of eukaryotic molecules that deploy a highly-specialized array of phosphate groups as a combinatorial cell-signaling code. One reductive strategy to derive a molecular-level understanding of the many actions of PP-InsPs is to individually characterize the proteins that bind them. Here, we describe an alternate approach that seeks a single, collective rationalization for PP-InsP binding to an entire group of proteins, i.e., the multiple nucleolar proteins previously reported to bind 5-InsP7 (5-diphospho-inositol-1,2,3,4,6-pentakisphosphate). Quantitative confocal imaging of the outer nucleolar granular region revealed its expansion when cellular 5-InsP7 levels were elevated by either (a) reducing the 5-InsP7 metabolism by a CRISPR-based knockout (KO) of either NUDT3 or PPIP5Ks; or (b), the heterologous expression of wild-type inositol hexakisphosphate kinase, i.e., IP6K2; separate expression of a kinase-dead IP6K2 mutant did not affect granular volume. Conversely, the nucleolar granular region in PPIP5K KO cells shrank back to the wild-type volume upon attenuating 5-InsP7 synthesis using either a pan-IP6K inhibitor or the siRNA-induced knockdown of IP6K1+IP6K2. Significantly, the inner fibrillar volume of the nucleolus was unaffected by 5-InsP7. We posit that 5-InsP7 acts as an ‘electrostatic glue’ that binds together positively charged surfaces on separate proteins, overcoming mutual protein–protein electrostatic repulsion the latter phenomenon is a known requirement for the assembly of a non-membranous biomolecular condensate.

Journal ArticleDOI
TL;DR: In this paper , photoswitchable azopyrazoles were used to target CDPK1 from Toxoplasma gondii, a kinase naturally susceptible to analog-sensitive kinase inhibitors due to its glycine gatekeeper residue.
Abstract: Potent and selective small-molecule inhibitors are valuable tools to elucidate the functions of protein kinases within complex signaling networks. Incorporation of a photoswitchable moiety into the inhibitor scaffold offers the opportunity to steer inhibitor potency with temporal precision, while the challenge of selective inhibition can often be addressed by employing a chemical genetic approach, termed the analog-sensitive method. Here, we combine the perks of these two approaches and report photoswitchable azopyrazoles to target calcium-dependent protein kinase 1 (CDPK1) from Toxoplasma gondii, a kinase naturally susceptible to analog-sensitive kinase inhibitors due to its glycine gatekeeper residue. The most promising azopyrazoles display favorable photochemical properties, thermal stability, and a substantial difference in IC50 values between both photostationary states. Consequently, the CDPK1 kinase reaction can be controlled dynamically and reversibly by applying light of different wavelengths. Inhibition of CDPK1 by the azopyrazoles drastically relies on the nature of the gatekeeper residue as a successive increase in gatekeeper size causes a concurrent loss of inhibitory activity. Furthermore, two photoswitchable inhibitors exhibit activity against T. gondii and Cryptosporidium parvum infection in a cell culture model, making them a promising addition to the toolbox for dissecting the role of CDPK1 in the infectious cycle with high temporal control. Overall, this work merges the benefits of the analog-sensitive approach and photopharmacology without compromising inhibitory potency and thus holds great promise for application to other protein kinases in the future.

Journal ArticleDOI
TL;DR: Inositol poly-and pyrophosphates (InsPs and PP-InsPs) are central eukaryotic messengers and can exist in two distinct conformations, a canonical one with five phosphoryl groups in equatorial positions, and a flipped conformation with five axial substituents as discussed by the authors .
Abstract: Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are central eukaryotic messengers. These very highly phosphorylated molecules can exist in two distinct conformations, a canonical one with five phosphoryl groups in equatorial positions, and a “flipped” conformation with five axial substituents. Using 13C-labeled InsPs/PP-InsPs, the behavior of these molecules was investigated by 2D-NMR under solution conditions reminiscent of a cytosolic environment. Remarkably, the most highly phosphorylated messenger 1,5(PP)2-InsP4 (also termed InsP8) readily adopts both conformations at physiological conditions. Environmental factors—such as pH, metal cation composition, and temperature—strongly influence the conformational equilibrium. Thermodynamic data revealed that the transition of InsP8 from the equatorial to the axial conformation is, in fact, an exothermic process. The speciation of InsPs and PP-InsPs also affects their interaction with protein binding partners; addition of Mg2+ decreased the binding constant Kd of InsP8 to an SPX protein domain. The results illustrate that PP-InsP speciation reacts very sensitively to solution conditions, suggesting it might act as an environment-responsive molecular switch.