scispace - formally typeset
Search or ask a question

Showing papers by "Edoardo M. Airoldi published in 2009"


Journal ArticleDOI
19 Nov 2009-Nature
Abstract: Molecular regulation of embryonic stem cell (ESC) fate involves a coordinated interaction between epigenetic, transcriptional and translational mechanisms. It is unclear how these different molecular regulatory mechanisms interact to regulate changes in stem cell fate. Here we present a dynamic systems-level study of cell fate change in murine ESCs following a well-defined perturbation. Global changes in histone acetylation, chromatin-bound RNA polymerase II, messenger RNA (mRNA), and nuclear protein levels were measured over 5 days after downregulation of Nanog, a key pluripotency regulator. Our data demonstrate how a single genetic perturbation leads to progressive widespread changes in several molecular regulatory layers, and provide a dynamic view of information flow in the epigenome, transcriptome and proteome. We observe that a large proportion of changes in nuclear protein levels are not accompanied by concordant changes in the expression of corresponding mRNAs, indicating important roles for translational and post-translational regulation of ESC fate. Gene-ontology analysis across different molecular layers indicates that although chromatin reconfiguration is important for altering cell fate, it is preceded by transcription-factor-mediated regulatory events. The temporal order of gene expression alterations shows the order of the regulatory network reconfiguration and offers further insight into the gene regulatory network. Our studies extend the conventional systems biology approach to include many molecular species, regulatory layers and temporal series, and underscore the complexity of the multilayer regulatory mechanisms responsible for changes in protein expression that determine stem cell fate.

292 citations


Journal ArticleDOI
TL;DR: This paper develops statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae and finds that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy.
Abstract: Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.

113 citations


Posted Content
TL;DR: An overview of the historical development of statistical network modeling is overviewed and a number of examples that have been studied in the network literature are introduced, and a subsequent discussion focuses on anumber of prominent static and dynamic network models and their interconnections.
Abstract: Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.

89 citations


Posted Content
18 Dec 2009
TL;DR: This parametrization of hypergraphs based on the geometry of points in R can recover both the junction tree factorization as well as the hyper Markov law and is used to infer conditional independence models or Markov structure of multivariate distributions.
Abstract: A parametrization of hypergraphs based on the geometry of points in R is developed. Informative prior distributions on hypergraphs are induced through this parametrization by priors on point configurations via spatial processes. This prior specification is used to infer conditional independence models or Markov structure of multivariate distributions. Specifically, we can recover both the junction tree factorization as well as the hyper Markov law. This approach offers greater control on the distribution of graph features than Erdos-Renyi random graphs, supports inference of factorizations that cannot be retrieved by a graph alone, and leads to new Metropolis/Hastings Markov chain Monte Carlo algorithms with both local and global moves in graph space. We illustrate the utility of this parametrization and prior specification using simulations. AMS 2000 subject classifications: Primary 60K35, 60K35; secondary 60K35.

10 citations


Journal ArticleDOI
TL;DR: This article proposed an approach to relational learning which, given a set of pairs of objects, measures how well other pairs A:B fit in with the set $\mathbf{S}$ and addresses the following question: is the relation between objects A and B analogous to those relations found in the set of objects S?
Abstract: Analogical reasoning depends fundamentally on the ability to learn and generalize about relations between objects. We develop an approach to relational learning which, given a set of pairs of objects $\mathbf{S}=\{A^{(1)}:B^{(1)},A^{(2)}:B^{(2)},\ldots,A^{(N)}:B ^{(N)}\}$, measures how well other pairs A:B fit in with the set $\mathbf{S}$. Our work addresses the following question: is the relation between objects A and B analogous to those relations found in $\mathbf{S}$? Such questions are particularly relevant in information retrieval, where an investigator might want to search for analogous pairs of objects that match the query set of interest. There are many ways in which objects can be related, making the task of measuring analogies very challenging. Our approach combines a similarity measure on function spaces with Bayesian analysis to produce a ranking. It requires data containing features of the objects of interest and a link matrix specifying which relationships exist; no further attributes of such relationships are necessary. We illustrate the potential of our method on text analysis and information networks. An application on discovering functional interactions between pairs of proteins is discussed in detail, where we show that our approach can work in practice even if a small set of protein pairs is provided.

6 citations


Journal ArticleDOI
TL;DR: This work presents the heterogeneous hidden conditional random field, a new integrated array-CGH analysis method for jointly classifying tumors, inferring copy numbers and identifying clinically relevant positions in recurrent alteration regions, and demonstrates that it can be used to generate novel biological hypotheses for breast cancer.
Abstract: Motivation: The heterogeneity of cancer cannot always be recognized by tumor morphology, but may be reflected by the underlying genetic aberrations. Array comparative genome hybridization (array-CGH) methods provide high-throughput data on genetic copy numbers, but determining the clinically relevant copy number changes remains a challenge. Conventional classification methods for linking recurrent alterations to clinical outcome ignore sequential correlations in selecting relevant features. Conversely, existing sequence classification methods can only model overall copy number instability, without regard to any particular position in the genome. Results: Here, we present the heterogeneous hidden conditional random field, a new integrated array-CGH analysis method for jointly classifying tumors, inferring copy numbers and identifying clinically relevant positions in recurrent alteration regions. By capturing the sequentiality as well as the locality of changes, our integrated model provides better noise reduction, and achieves more relevant gene retrieval and more accurate classification than existing methods. We provide an efficient L1-regularized discriminative training algorithm, which notably selects a small set of candidate genes most likely to be clinically relevant and driving the recurrent amplicons of importance. Our method thus provides unbiased starting points in deciding which genomic regions and which genes in particular to pursue for further examination. Our experiments on synthetic data and real genomic cancer prediction data show that our method is superior, both in prediction accuracy and relevant feature discovery, to existing methods. We also demonstrate that it can be used to generate novel biological hypotheses for breast cancer. Contact: ogt@cs.princeton.edu Supplementary information: Supplementary data are available at Bioinformatics online.

6 citations


Posted Content
TL;DR: In this paper, a parametrization of hypergraphs based on the geometry of points in the graph space is developed, which can be used to infer conditional independence models or Markov structure of multivariate distributions.
Abstract: A parametrization of hypergraphs based on the geometry of points in $\mathbf{R}^d$ is developed. Informative prior distributions on hypergraphs are induced through this parametrization by priors on point configurations via spatial processes. This prior specification is used to infer conditional independence models or Markov structure of multivariate distributions. Specifically, we can recover both the junction tree factorization as well as the hyper Markov law. This approach offers greater control on the distribution of graph features than Erd\"os-R\'enyi random graphs, supports inference of factorizations that cannot be retrieved by a graph alone, and leads to new Metropolis\slash Hastings Markov chain Monte Carlo algorithms with both local and global moves in graph space. We illustrate the utility of this parametrization and prior specification using simulations.

3 citations