scispace - formally typeset
Search or ask a question

Showing papers by "Edward J. Wollack published in 2023"


11 Apr 2023
TL;DR: In this paper , the amplitude of the CMB lensing power spectrum at the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset was determined using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties.
Abstract: We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43\sigma$ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. The baseline spectrum is well fit by a lensing amplitude of $A_{\mathrm{lens}}=1.013\pm0.023$ relative to the Planck 2018 CMB power spectra best-fit $\Lambda$CDM model and $A_{\mathrm{lens}}=1.005\pm0.023$ relative to the $\text{ACT DR4} + \text{WMAP}$ best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination $S^{\mathrm{CMBL}}_8 \equiv \sigma_8 \left({\Omega_m}/{0.3}\right)^{0.25}$ of $S^{\mathrm{CMBL}}_8= 0.818\pm0.022$ from ACT DR6 CMB lensing alone and $S^{\mathrm{CMBL}}_8= 0.813\pm0.018$ when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with $\Lambda$CDM model constraints from Planck or $\text{ACT DR4} + \text{WMAP}$ CMB power spectrum measurements. Our lensing measurements from redshifts $z\sim0.5$--$5$ are thus fully consistent with $\Lambda$CDM structure growth predictions based on CMB anisotropies probing primarily $z\sim1100$. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts

4 citations


Peer ReviewDOI
TL;DR: The Cosmology Large Angular Scale Surveyor (CLASS) as discussed by the authors is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert and designed to measure the polarized Cosmic Microwave Background (CMB) over large angular scales.
Abstract: The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert and designed to measure the polarized Cosmic Microwave Background (CMB) over large angular scales. The CLASS array is currently observing with three telescopes covering four frequency bands: one at 40 GHz (Q); one at 90 GHz (W1); and one dichroic system at 150/220 GHz (HF). During the austral winter of 2022, we upgraded the first 90 GHz telescope (W1) by replacing four of the seven focal plane modules. These new modules contain detector wafers with an updated design, aimed at improving the optical efficiency and detector stability. We present a description of the design changes and measurements of on-sky optical efficiencies derived from observations of Jupiter.

1 citations


Peer Review
11 Apr 2023
TL;DR: In this article , cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021 were presented.
Abstract: We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations $\sigma_8 = 0.819 \pm 0.015$ at 1.8% precision, $S_8\equiv\sigma_8({\Omega_{\rm m}}/0.3)^{0.5}=0.840\pm0.028$ and the Hubble constant $H_0= (68.3 \pm 1.1)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$ at 1.6% precision. A joint constraint with CMB lensing measured by the Planck satellite yields even more precise values: $\sigma_8 = 0.812 \pm 0.013$, $S_8\equiv\sigma_8({\Omega_{\rm m}}/0.3)^{0.5}=0.831\pm0.023$ and $H_0= (68.1 \pm 1.0)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$. These measurements agree well with $\Lambda$CDM-model extrapolations from the CMB anisotropies measured by Planck. To compare these constraints to those from the KiDS, DES, and HSC galaxy surveys, we revisit those data sets with a uniform set of assumptions, and find $S_8$ from all three surveys are lower than that from ACT+Planck lensing by varying levels ranging from 1.7-2.1$\sigma$. These results motivate further measurements and comparison, not just between the CMB anisotropies and galaxy lensing, but also between CMB lensing probing $z\sim 0.5-5$ on mostly-linear scales and galaxy lensing at $z\sim 0.5$ on smaller scales. We combine our CMB lensing measurements with CMB anisotropies to constrain extensions of $\Lambda$CDM, limiting the sum of the neutrino masses to $\sum m_{ u}<0.12$ eV (95% c.l.), for example. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the $\Lambda$CDM model, while paving a promising path for neutrino physics with gravitational lensing from upcoming ground-based CMB surveys.

1 citations


Journal ArticleDOI
TL;DR: In this paper , a ray-tracing-based modeling technique was used to predict far sidelobes for a TMA telescope designed to observe the CMB from the South Pole, and a highly scattering surface that would provide more than an order of magnitude reduction in the degree-scale far-sidelobe contrast compared to a typical reflective surface.
Abstract: Telescopes measuring cosmic microwave background (CMB) polarization on large angular scales require exquisite control of systematic errors to ensure the fidelity of the cosmological results. In particular, far-sidelobe contamination from wide angle scattering is a potentially prominent source of systematic error for large aperture microwave telescopes. Here we describe and demonstrate a ray-tracing-based modeling technique to predict far sidelobes for a Three Mirror Anistigmat (TMA) telescope designed to observe the CMB from the South Pole. Those sidelobes are produced by light scattered in the receiver optics subsequently interacting with the walls of the surrounding telescope enclosure. After comparing simulated sidelobe maps and angular power spectra for different enclosure wall treatments, we propose a highly scattering surface that would provide more than an order of magnitude reduction in the degree-scale far-sidelobe contrast compared to a typical reflective surface. We conclude by discussing the fabrication of a prototype scattering wall panel and presenting measurements of its angular scattering profile.

1 citations


Journal ArticleDOI
Unni Irene Fuskeland, J. Aumont, R. Aurlien, Carlo Baccigalupi, A. J. Banday, H. K. Eriksen, Josquin Errard, R. T. G'enova-Santos, T. Hasebe, Johannes Hubmayr, H. Imada, Nicoletta Krachmalnicoff, Luca Lamagna, Giampaolo Pisano, Davide Poletti, Mathieu Remazeilles, K. L. Thompson, L. Vacher, Ingunn Kathrine Wehus, S. Azzoni, Mario Ballardini, R. B. Barreiro, N. Bartolo, A. Y. Basyrov, D. Beck, Marco Bersanelli, Marco Bortolami, M. Brilenkov, Erminia Calabrese, Alessandro V Carones, F. J. Casas, K. Cheung, Jens Chluba, Susan E. Clark, Lionel Clermont, F. Columbro, Alessandro Coppolecchia, Giuseppe D'Alessandro, P. de Bernardis, T. de Haan, E. D. L. Hoz, Marco De Petris, S. Della Torre, P. Diego-Palazuelos, Fabio Finelli, Cristian Franceschet, G. Galloni, Matt Galloway, Martina Gerbino, Massimo Gervasi, T. Ghigna, Serena Giardiello, E. Gjerløw, Alessandro Gruppuso, P. Hargrave, M. Hattori, Masashi Hazumi, L. T. Hergt, Daniel Herman, D. Herranz, E. Hivon, Thuong D. Hoang, Kumiko Kohri, Massimiliano Lattanzi, A. T. Lee, Christophe Leloup, François Levrier, Anto. I. Lonappan, Gemma Luzzi, Bruno Maffei, E. Mart'inez-Gonz'alez, Silvia Masi, Sabino Matarrese, T. Matsumura, M. Migliaccio, L. Montier, Gianluca Morgante, B. Mot, L. Mousset, Ryo Nagata, Tadahiro Namikawa, Federico Nati, Paolo Natoli, S. Nerval, Antonella Novelli, L. Pagano, Alessandro Paiella, Daniela Paoletti, G. Pascual-Cisneros, G. Patanchon, Vincent Pelgrims, F. Piacentini, Giulia Piccirilli, G. Polenta, Giuseppe Puglisi, N. Raffuzzi, A. Ritacco, Jose Alberto Rubino-Martin, Giorgio Savini, Doran Scott, Yusuke Sekimoto, Maresuke Shiraishi, Giulia Signorelli, S. Stever, N. Stutzer, Raelyn M. Sullivan, S. Takakura, Luca Terenzi, H. Thommesen, M. Tristram, Masanobu Tsuji, P. Vielva, John Weller, Benjamin Westbrook, G. Weymann-Despres, Edward J. Wollack, Mario Zannoni 
TL;DR: In this paper , the authors compare the baseline design with five extended configurations, while varying the underlying dust modeling, in each of which the HFT (High-Frequency Telescope) frequency range is shifted logarithmically towards higher frequencies, with an upper cutoff ranging between 400 and 600 GHz.
Abstract: LiteBIRD is a planned JAXA-led CMB B-mode satellite experiment aiming for launch in the late 2020s, with a primary goal of detecting the imprint of primordial inflationary gravitational waves. Its current baseline focal-plane configuration includes 15 frequency bands between 40 and 402 GHz, fulfilling the mission requirements to detect the amplitude of gravitational waves with the total uncertainty on the tensor-to-scalar ratio, $\delta r$, down to $\delta r<0.001$. A key aspect of this performance is accurate astrophysical component separation, and the ability to remove polarized thermal dust emission is particularly important. In this paper we note that the CMB frequency spectrum falls off nearly exponentially above 300 GHz relative to the thermal dust SED, and a relatively minor high frequency extension can therefore result in even lower uncertainties and better model reconstructions. Specifically, we compare the baseline design with five extended configurations, while varying the underlying dust modeling, in each of which the HFT (High-Frequency Telescope) frequency range is shifted logarithmically towards higher frequencies, with an upper cutoff ranging between 400 and 600 GHz. In each case, we measure the tensor-to-scalar ratio $r$ uncertainty and bias using both parametric and minimum-variance component-separation algorithms. When the thermal dust sky model includes a spatially varying spectral index and temperature, we find that the statistical uncertainty on $r$ after foreground cleaning may be reduced by as much as 30--50 % by extending the upper limit of the frequency range from 400 to 600 GHz, with most of the improvement already gained at 500 GHz. We also note that a broader frequency range leads to better ability to discriminate between models through higher $\chi^2$ sensitivity. (abridged)

1 citations


07 Mar 2023
TL;DR: In this paper , a wavelet-based approach was proposed to model correlated instrumental noise in the Atacama Cosmology Telescope Data Release 6 (ACT DR6) maps, and the authors evaluated the performance of these models against the ACT DR6 data by drawing ensembles of noise realizations.
Abstract: The increasing statistical power of cosmic microwave background (CMB) datasets requires a commensurate effort in understanding their noise properties. The noise in maps from ground-based instruments is dominated by large-scale correlations, which poses a modeling challenge. This paper develops novel models of the complex noise covariance structure in the Atacama Cosmology Telescope Data Release 6 (ACT DR6) maps. We first enumerate the noise properties that arise from the combination of the atmosphere and the ACT scan strategy. We then prescribe a class of Gaussian, map-based noise models, including a new wavelet-based approach that uses directional wavelet kernels for modeling correlated instrumental noise. The models are empirical, whose only inputs are a small number of independent realizations of the same region of sky. We evaluate the performance of these models against the ACT DR6 data by drawing ensembles of noise realizations. Applying these simulations to the ACT DR6 power spectrum pipeline reveals a $\sim 20\%$ excess in the covariance matrix diagonal when compared to an analytic expression that assumes noise properties are uniquely described by their power spectrum. Along with our public code, $\mathtt{mnms}$, this work establishes a necessary element in the science pipelines of both ACT DR6 and future ground-based CMB experiments such as the Simons Observatory (SO).

1 citations


Peer Review
01 May 2023
TL;DR: The Cosmology Large Angular Scale Surveyor (CLASS) as discussed by the authors is a telescope array that observes the cosmic microwave background over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220~GHz.
Abstract: The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75\% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220~GHz. This paper describes the CLASS data pipeline and maps for 40~GHz observations conducted from August 2016 to May 2022. We demonstrate how well the CLASS survey strategy, with rapid ($\sim10\,\mathrm{Hz}$) front-end modulation, recovers the large-scale Galactic polarization signal from the ground: the mapping transfer function recovers $\sim75$\% of $EE$, $BB$, and $VV$ power at $\ell=20$ and $\sim45$\% at $\ell=10$. We present linear and circular polarization maps over 75\% of the sky. Simulations based on the data imply the maps have a white noise level of $110\,\mathrm{\mu K\, arcmin}$ and correlated noise component rising at low-$\ell$ as $\ell^{-2.2}$. The transfer-function-corrected low-$\ell$ component is comparable to the white noise at the angular knee frequencies of $\ell\approx16$ (linear polarization) and $\ell\approx12$ (circular polarization). Finally, we present simulations of the level at which expected sources of systematic error bias the measurements, finding sub-percent bias for the $\Lambda\mathrm{CDM}$ $EE$ power spectra. Bias from $E$-to-$B$ leakage due to the data reduction pipeline and polarization angle uncertainty approaches the expected level for an $r=0.01$ $BB$ power spectrum. Improvements to the instrument calibration and the data pipeline will decrease this bias.

31 Mar 2023
TL;DR: The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept to measure the spectrum and polarization of the cosmic microwave background as mentioned in this paper , where the instrument design provides multiple levels of null operation, signal modulation, and signal differences, with only few-percent systematic error suppression required at each level.
Abstract: The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept to measure the spectrum and polarization of the cosmic microwave background. Cosmological signals are small compared to the instantaneous instrument noise, requiring strict control of instrumental signals. The instrument design provides multiple levels of null operation, signal modulation, and signal differences, with only few-percent systematic error suppression required at each level. Jackknife tests based on discrete instrument symmetries provide an independent means to identify, model, and remove remaining instrumental signals. We use detailed time-ordered simulations, including realistic performance and tolerance parameters, to evaluate the instrument response to broad classes of systematic errors for both spectral distortions and polarization. The largest systematic errors contribute additional white noise at the few-percent level compared to the dominant photon noise. Coherent instrumental effects which do not integrate down are smaller still, and remain several orders of magnitude below the targeted cosmological signals.

Peer Review
18 Jan 2023
TL;DR: In this article , the authors performed targeted searches of known, extragalactic transient events at millimetre wavelengths using nine seasons (2013-2021) of 98, 150, and 229 GHz Atacama Cosmology Telescope (ACT) observations that mapped ∼ 40 per cent of the sky for most of the data volume.
Abstract: We have performed targeted searches of known, extragalactic transient events at millimetre wavelengths using nine seasons (2013–2021) of 98, 150, and 229 GHz Atacama Cosmology Telescope (ACT) observations that mapped ∼ 40 per cent of the sky for most of the data volume. We observe at least once 88 gamma-ray bursts (GRBs), 12 tidal disruption events (TDEs) and 203 other transients, including supernovae (SNe). We stack our ACT observations to increase the signal-to-noise ratio of the maps. In all cases but one, we do not detect these transients in the ACT data. The single candidate detection (event AT2019ppm), seen at ∼ 5 𝜎 significance in our data, appears to be due to active galactic nuclei (AGN) activity in the host galaxy coincident with a transient alert. For each source in our search we provide flux upper limits. For example, the medians for the 98 GHz 95 per cent confidence interval upper limits are 28, 15, and 16 mJy for GRBs, SNe, and TDEs respectively. The sensitivity of future wide-area cosmic microwave background (CMB) surveys should be good enough to detect many of these events using the methods described in this paper.

Peer Review
14 Apr 2023
TL;DR: In this article , the authors reported on the disk-averaged absolute brightness temperatures of Venus measured at four microwave frequency bands with the Cosmology Large Angular Scale Surveyor (CLASS), and they measured temperatures of 432.3 K, 355.6 K, 317.7 K, and 294.9 K for frequency bands centered at 38.8, 93.7, 147.9, and 217.5 GHz.
Abstract: We report on the disk-averaged absolute brightness temperatures of Venus measured at four microwave frequency bands with the Cosmology Large Angular Scale Surveyor (CLASS). We measure temperatures of 432.3 $\pm$ 2.8 K, 355.6 $\pm$ 1.3 K, 317.9 $\pm$ 1.7 K, and 294.7 $\pm$ 1.9 K for frequency bands centered at 38.8, 93.7, 147.9, and 217.5 GHz, respectively. We do not observe any dependence of the measured brightness temperatures on solar illumination for all four frequency bands. A joint analysis of our measurements with lower frequency Very Large Array (VLA) observations suggests relatively warmer ($\sim$ 7 K higher) mean atmospheric temperatures and lower abundances of microwave continuum absorbers than those inferred from prior radio occultation measurements.

Peer Review
02 Jun 2023
TL;DR: The first data release (DR1) of the Far-Infrared Polarimetric Large Area CMZ Exploration (FIREPLACE) survey as discussed by the authors was taken using the HAWC+ instrument with the SOFIA telescope (19.6"resolution; 0.7 pc).
Abstract: We present the first data release (DR1) of the Far-Infrared Polarimetric Large Area CMZ Exploration (FIREPLACE) survey. The survey was taken using the 214-micron band of the HAWC+ instrument with the SOFIA telescope (19.6"resolution; 0.7 pc). In this first data release we present dust polarization observations covering a ~0.5degree region of the Galactic Center's Central Molecular Zone (CMZ), centered on the Sgr B2 complex. We detect ~25,000 Nyquist-sampled polarization pseudovectors, after applying the standard SOFIA cuts for minimum signal-to-noise in fractional polarization and total intensity of 3 and 200, respectively. Analysis of the magnetic field orientation suggests a bimodal distribution in the field direction. This bimodal distribution shows enhancements in the distribution of field directions for orientations parallel and perpendicular to the Galactic plane, which is suggestive of a CMZ magnetic field configuration with polodial and torodial components. Furthermore, a detailed analysis of individual clouds included in our survey (i.e., Sgr B2, Sgr B2-NW, Sgr B2-Halo, Sgr B1, and Clouds-E/F) shows these clouds have fractional polarization values of 1-10% at 214-micron, with most of the emission having values<5%. A few of these clouds (i.e., Sgr B2, Clouds-E/F) show relatively low fractional polarization values toward the cores of the cloud, with higher fractional polarization values toward the less dense periphery. We also observe higher fractional polarization towards compact HII regions which could indicate an enhancement in the grain alignment in the dust surrounding these sources.

DOI
TL;DR: In this paper , a leg-isolated TES bolometer of higher superconducting transition temperature (Tc) is encircled by a second membrane region which is metallized and thermally stabilized by a lower Tc bolometer.
Abstract: Electrothermal feedback in a transition edge sensor (TES) suppresses thermal fluctuations in the TES and well-thermally coupled regions in proximity. We have designed a heavily metallized, leg-isolated membrane with a TES which serves as a thermal isolation stage that can be lithographically integrated with other devices, for example, a suitably designed TES detector. Through modeling, fabrication, and test of prototype devices, we plan to examine the utility of stabilizing this guard stage to limit low frequency variability in the sensor response. In one implementation, a leg-isolated TES bolometer of higher superconducting transition temperature (Tc) is encircled by a second membrane region which is metallized and thermally stabilized by a second, lower-Tc TES. We present fabrication results on the dual-Tc device and explore varied heat capacity of the thermal stability stage in the single-pixel design. We then evaluate the use of this stage for multiple pixel arrangements and investigate the criteria for stabilizing such a device.

11 Apr 2023
TL;DR: In this paper , the authors investigate the impact and mitigation of extragalactic foregrounds for the CMB lensing power spectrum analysis of Atacama Cosmology Telescope (ACT) data release 6 (DR6) data.
Abstract: We investigate the impact and mitigation of extragalactic foregrounds for the CMB lensing power spectrum analysis of Atacama Cosmology Telescope (ACT) data release 6 (DR6) data. Two independent microwave sky simulations are used to test a range of mitigation strategies. We demonstrate that finding and then subtracting point sources, finding and then subtracting models of clusters, and using a profile bias-hardened lensing estimator, together reduce the fractional biases to well below statistical uncertainties, with the inferred lensing amplitude, $A_{\mathrm{lens}}$, biased by less than $0.2\sigma$. We also show that another method where a model for the cosmic infrared background (CIB) contribution is deprojected and high frequency data from Planck is included has similar performance. Other frequency-cleaned options do not perform as well, incurring either a large noise cost, or resulting in biased recovery of the lensing spectrum. In addition to these simulation-based tests, we also present null tests performed on the ACT DR6 data which test for sensitivity of our lensing spectrum estimation to differences in foreground levels between the two ACT frequencies used, while nulling the CMB lensing signal. These tests pass whether the nulling is performed at the map or bandpower level. The CIB-deprojected measurement performed on the DR6 data is consistent with our baseline measurement, implying contamination from the CIB is unlikely to significantly bias the DR6 lensing spectrum. This collection of tests gives confidence that the ACT DR6 lensing measurements and cosmological constraints presented in companion papers to this work are robust to extragalactic foregrounds.

Journal ArticleDOI
TL;DR: In this paper , the authors presented the detailed metrology of a superconducting transition-edge sensor (TES) absorber-coupled bolometer array bonded to a variable-delay backshort to form integral field unit.
Abstract: We present the detailed metrology of a superconducting Transition-Edge Sensor (TES) absorber-coupled bolometer array bonded to a variable-delay backshort to form an integral field unit. The backshort is shaped as a wedge to continuously vary the electrical phase delay of the bolometer absorber reflective termination across the array. This resonant absorber termination structure is used to define a spectral response over a 4:1 bandwidth in the far-infrared, from ∼30 to 120 μm. The metrology of the backshort-bolometer array hybrid was achieved with a laser confocal microscope and a compact cryogenic system that provides a well-defined thermal (radiative and conductive) environment for the hybrid when cooled to ∼10 K. The results show the backshort free-space delays do not change with cooling. The estimated backshort slope is 1.58 milli-radians and within 0.3% of the targeted value. The sources of error in the free-space delay of the hybrid and optical cryogenic metrology implementations are discussed in detail. We also present measurements of the bolometer's single-crystal silicon membrane topography. The membranes deform and deflect out-of-plane under both warm and cold conditions. Intriguingly, the optically active area of the membranes tends to flatten when cold and repeatably achieve the same mechanical state over many thermal cycles; hence, no evidence for thermally-induced mechanical instability is observed. Most of the cold deformation is sourced from thermally-induced stress in the metallic layers comprising the TES element of the bolometer pixels. These results provide important considerations for the design of ultra-low-noise TES bolometers.

Journal ArticleDOI
08 Feb 2023
TL;DR: In this article , the authors present a model for the structure of the universe in terms of the microwave background of the Earth's magnetic field, which they call PHYSH subject headings (PhySH).
Abstract: Received 24 January 2023DOI:https://doi.org/10.1103/PhysRevD.107.049903© 2023 American Physical SocietyPhysics Subject Headings (PhySH)Research AreasCosmic microwave backgroundLarge scale structure of the UniverseSky surveysPhysical SystemsGalaxy clustersIntergalactic mediumGravitation, Cosmology & Astrophysics

08 Mar 2023
TL;DR: In this paper , a systematic search for transients in three years of data (2017-2019) from the Atacama Cosmology Telescope (ACT) was conducted, which yielded 29 transients detections.
Abstract: We conduct a systematic search for transients in three years of data (2017-2019) from the Atacama Cosmology Telescope (ACT). ACT covers 40 percent of the sky at three bands spanning from 77 GHz to 277 GHz. Analysis of 3-day mean-subtracted sky maps, which were match-filtered for point sources, yielded 29 transients detections. Eight of these transients are due to known asteroids, and three others were previously published. Four of these events occur in areas of with poor noise models and thus we cannot be confident they are real transients. We are left with 14 new transient events occurring at 11 unique locations. All of these events are associated with either rotationally variable stars or cool stars. Ten events have flat or falling spectra indicating radiation from synchrotron emission. One event has a rising spectrum indicating a different engine for the flare.

18 Apr 2023
TL;DR: In this article , a beam reconstruction pipeline for the Simons Observatory Small Aperture Telescopes is developed based on a map maker that estimates and subtracts correlated atmospheric noise and a beam fitting code designed to compensate for the bias caused by the map maker.
Abstract: We use time-domain simulations of Jupiter observations to test and develop a beam reconstruction pipeline for the Simons Observatory Small Aperture Telescopes. The method relies on a map maker that estimates and subtracts correlated atmospheric noise and a beam fitting code designed to compensate for the bias caused by the map maker. We test our reconstruction performance for four different frequency bands against various algorithmic parameters, atmospheric conditions and input beams. We additionally show the reconstruction quality as function of the number of available observations and investigate how different calibration strategies affect the beam uncertainty. For all of the cases considered, we find good agreement between the fitted results and the input beam model within a ~1.5% error for a multipole range l = 30 - 700.

Journal ArticleDOI
18 Jul 2023
TL;DR: In this article , the challenges and advances needed across those areas covering design tools, simulation capabilities, fabrication processes, the need for entirely new components, integration and hybridization and the characterization of devices are identified.
Abstract: Photonic technologies offer numerous functionalities that can be used to realize astrophotonic instruments. The most spectacular example to date is the ESO Gravity instrument at the Very Large Telescope in Chile that combines the light-gathering power of four 8-m telescopes through a complex photonic interferometer. Fully integrated astrophotonic devices offer critical advantages for instrument development, including extreme miniaturization when operating at the diffraction-limit, plus integration, superior thermal and mechanical stabilization owing to the small footprint, and high replicability offering significant cost savings. Numerous astrophotonic technologies have been developed to address shortcomings of conventional instruments to date, including the development of photonic lanterns to convert from multimode inputs to single mode outputs, complex aperiodic fiber Bragg gratings to filter OH emission from the atmosphere, beam combiners enabling long baseline interferometry with for example, ESO Gravity, and laser frequency combs for high precision spectral calibration of spectrometers. Despite these successes, the facility implementation of photonic solutions in astronomical instrumentation is currently limited because of 1) low throughputs from coupling to fibers, coupling fibers to chips, propagation and bend losses, device losses, etc., 2) difficulties with scaling to large channel count devices needed for large bandwidths and high resolutions, and 3) efficient integration of photonics with detectors. In this roadmap, we identify 23 key areas that need further development. We outline the challenges and advances needed across those areas covering design tools, simulation capabilities, fabrication processes, the need for entirely new components, integration and hybridization and the characterization of devices. To realize these advances the astrophotonics community will have to work cooperatively with industrial partners who have more advanced manufacturing capabilities. With the advances described herein, multi-functional integrated instruments will be realized leading to novel observing capabilities for both ground and space based platforms, enabling new scientific studies and discoveries.

Peer Review
29 Jun 2023
TL;DR: In this paper , the cross-correlation between the MagLim galaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over $\sim 436$ sq.deg., is divided into six redshift bins spanning the redshift range of $0.20
Abstract: We present a measurement of the cross-correlation between the MagLim galaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over $\sim 436$ sq.deg. of the sky. Our galaxy sample, which covers $\sim 4143$ sq.deg., is divided into six redshift bins spanning the redshift range of $0.20

02 Mar 2023
TL;DR: In this article , the authors forecast how well the next-generation ground-based CMB experiment CMB-S4 will be able to constrain primordial squeezed-limit non-Gaussianity, parameterized by $f_\mathrm{NL}, using measurements of $C_{\ell}^{\mu T}$ as well as from CMB $E$ modes.
Abstract: Diffusion damping of the cosmic microwave background (CMB) power spectrum results from imperfect photon-baryon coupling in the pre-recombination plasma. At redshift $5 \times 10^4

03 Jul 2023
TL;DR: In this article , the authors present a new arcminute-resolution Compton-$y$ map, which traces out the line-of-sight-integrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky.
Abstract: Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-$y$ distortion due to the thermal Sunyaev-Zel'dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one component. In this work, we present a new arcminute-resolution Compton-$y$ map, which traces out the line-of-sight-integrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13,000 sq.~deg.). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing \textit{Planck} component-separated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB.

Peer Review
20 Apr 2023
TL;DR: In this article , weak gravitational lensing measurements of a sample of 157 clusters within the Kilo Degree Survey (KiDS), detected with a $>5σ$ thermal Sunyaev-Zel'dovich (SZ) signal by the Atacama Cosmology Telescope (ACT), using a halo-model approach, constrain the average total cluster mass.
Abstract: We present weak gravitational lensing measurements of a sample of 157 clusters within the Kilo Degree Survey (KiDS), detected with a $>5\sigma$ thermal Sunyaev-Zel'dovich (SZ) signal by the Atacama Cosmology Telescope (ACT). Using a halo-model approach we constrain the average total cluster mass, $M_{\rm WL}$, accounting for the ACT cluster selection function of the full sample. We find that the SZ cluster mass estimate $M_{\rm SZ}$, which was calibrated using X-ray observations, is biased with $M_{\rm SZ}/M_{\rm WL} = (1-b_{\rm SZ}) = 0.65\pm 0.05$. Separating the sample into six mass bins, we find no evidence of a strong mass-dependency for the mass bias, $(1-b_{\rm SZ})$. Adopting this ACT-KiDS SZ mass-calibration would bring the Planck SZ cluster count into agreement with the counts expected from the {\it Planck} cosmic microwave background $\Lambda$CDM cosmological model, although it should be noted that the cluster sample considered in this work has a lower average mass $M_{\rm SZ, uncor} = 3.64 \times 10^{14} M_{\odot}$ compared to the Planck cluster sample which has an average mass in the range $M_{\rm SZ, uncor} = (5.5-8.5) \times 10^{14} M_{\odot}$, depending on the sub-sample used.

Peer Review
12 Jul 2023
TL;DR: In this paper , a cross-correlation analysis between total intensity and polarization observations from the Atacama Cosmology Telescope (ACT) at 150 and 220 GHz and 15$''$ mid-infrared photometry from the Wide-field Infrared Survey Explorer (WISE) over 107 12.5
Abstract: We present a cross-correlation analysis between $1'$ resolution total intensity and polarization observations from the Atacama Cosmology Telescope (ACT) at 150 and 220 GHz and 15$''$ mid-infrared photometry from the Wide-field Infrared Survey Explorer (WISE) over 107 12.5$^\circ\times$12.5$^\circ$ patches of sky. We detect a spatially isotropic signal in the WISE$\times$ACT $TT$ cross power spectrum at 30$\sigma$ significance that we interpret as the correlation between the cosmic infrared background at ACT frequencies and polycyclic aromatic hydrocarbon (PAH) emission from galaxies in WISE, i.e., the cosmic PAH background. Within the Milky Way, the Galactic dust $TT$ spectra are generally well-described by power laws in $\ell$ over the range 10$^3<\ell<$10$^4$, but there is evidence both for variability in the power law index and for non-power law behavior in some regions. We measure a positive correlation between WISE total intensity and ACT $E$-mode polarization at 1000$<\ell \lesssim $6000 at $>$3$\sigma$ in each of 35 distinct $\sim$100 deg$^2$ regions of the sky, suggesting alignment between Galactic density structures and the local magnetic field persists to sub-parsec physical scales in these regions. The distribution of $TE$ amplitudes in this $\ell$ range across all 107 regions is biased to positive values, while there is no evidence for such a bias in the $TB$ spectra. This work constitutes the highest-$\ell$ measurements of the Galactic dust $TE$ spectrum to date and indicates that cross-correlation with high-resolution mid-infrared measurements of dust emission is a promising tool for constraining the spatial statistics of dust emission at millimeter wavelengths.

08 Jun 2023
TL;DR: In this paper , the Atacama Cosmology Telescope (ACT) was used to detect 160 asteroids with a signal-to-noise of at least 5 in at least one of the ACT observing bands, which are centered near 90, 150, and 220 GHz.
Abstract: We present fluxes and light curves for a population of asteroids at millimeter (mm) wavelengths, detected by the Atacama Cosmology Telescope (ACT) over 18, 000 deg2 of the sky using data from 2017 to 2021. We utilize high cadence maps, which can be used in searching for moving objects such as asteroids and trans-Neptunian Objects (TNOs), as well as for studying transients. We detect 160 asteroids with a signal-to-noise of at least 5 in at least one of the ACT observing bands, which are centered near 90, 150, and 220 GHz. For each asteroid, we compare the ACT measured flux to predicted fluxes from the Near Earth Asteroid Thermal Model (NEATM) fit to WISE data. We confirm previous results that detected a deficit of flux at millimeter wavelengths. Moreover, we report a spectral characteristic to this deficit, such that the flux is relatively lower at 150 and 220 GHz than at 90 GHz. Additionally, we find that the deficit in flux is greater for S-type asteroids than for C-type.