scispace - formally typeset
Search or ask a question

Showing papers by "Eric R. Fearon published in 1991"


Journal ArticleDOI
TL;DR: The inability of the c-Myc leucine zipper to homo-oligomerize strongly in cells was confirmed independently and results suggest that c- myc function requires hetero-OLigomerization to an as yet undefined factor.
Abstract: The physiological significance of in vitro leucine zipper interactions was studied by the use of two strategies which detect specific protein-protein interactions in mammalian cells. Fusion genes were constructed which produce chimeric proteins containing leucine zipper domains from several proteins fused either to the DNA-binding domain of the Saccharomyces cerevisiae GAL4 protein or to the transcriptional activation domain of the herpes simplex virus VP16 protein. Previous studies in mammalian cells have demonstrated that a single chimeric polypeptide containing these two domains will activate transcription of a reporter gene present downstream of the GAL4 DNA-binding site. Similarly, if the GAL4 DNA-binding domain of a chimeric protein could be complexed through leucine zipper interactions with the VP16 activation domain of another chimeric protein, then transcriptional activation of the reporter gene would be detected. Using this strategy for detecting leucine zipper interactions, we observed homo-oligomerization between leucine zipper domains of the yeast protein GCN4 and hetero-oligomerization between leucine zipper regions from the mammalian transcriptional regulating proteins c-Jun and c-Fos. In contrast, homo-oligomerization of the leucine zipper domain from c-Myc was not detectable in cells. The inability of the c-Myc leucine zipper to homo-oligomerize strongly in cells was confirmed independently. The second strategy to detect leucine zipper interactions takes advantage of the observation that the addition of nuclear localization sequences to a cytoplasmic protein will allow the cytoplasmic protein to be transported to and retained in the nucleus. Chimeric genes encoding proteins with sequences from a cytoplasmic protein fused either to the GCN4 or c-Myc leucine zipper domains were constructed. Experiments with the c-Myc chimeric protein failed to demonstrate transport of the cytoplasmic marker protein to the nucleus in cells expressing the wild-type c-Myc protein. In contrast, the cytoplasmic marker was translocated into the nucleus when the GCN4 leucine zippers were present on both the cytoplasmic marker and a nuclear protein, presumably as a result of leucine zipper interaction. These results suggest that c-Myc function requires hetero-oligomerization to an as yet undefined factor.

170 citations



Journal ArticleDOI
TL;DR: It is indicated that the immunogenicity ofHA-transfected SP1 cells may correlate with the cell-surface expression of class II MHC antigens, which seems able to induce a protective response against a parent SP1 cell challenge only if they also express class I MHCAntigens.
Abstract: The transfection of murine SP1 tumor cells with the hemagglutinin (HA) gene of influenza virus results, after fluorescent-activated cell sorting (FACS), in the selection of high-HA-expressing cell lines called H4A and H4B. Both lines fail to grow in syngeneic animals at doses that result in 100% tumor take of non-transfected tumor cells. Both grow in immunosuppressed mice. SP1 and H4A or H4B cells express few class I major histocompatibility complex (MHC) antigens but do express class II IAk antigens. H4A or H4B cells engender a cytotoxic T lymphocyte (CTL) response but cannot protect against a challenge with SP1 cells. This CTL response is inhibited by anti-CD4 but not anti-CD8 antibodies. Using FACS, we were able to select a population (called H5AK5) with high class-I MHC antigen expression. Like H4A and H4B, H5AK5 cells fail to grow in syngeneic animals but do grow in immunosuppressed mice. However, unlike H4A or H4B, H5AK5 can induce protection against a challenge with 1 × 105 SP1 cells. These studies indicate that the immunogenicity ofHA-transfected SP1 cells may correlate with the cell-surface expression of class II MHC antigens. However, HA-expressing SP1 cells seem able to induce a protective response against a parent SP1 cell challenge only if they also express class I MHC antigens. This view is supported by the observations that SP1 cells expressing murine interleukin-2 do not express class I MHC antigens, fail to grow in syngeneic animals, do grow in immunosuppressed mice but do not protect against a challenge with parental SP1 cells.

3 citations