scispace - formally typeset
JournalISSN: 0270-7306

Molecular and Cellular Biology 

About: Molecular and Cellular Biology is an academic journal. The journal publishes majorly in the area(s): Transcription factor & Gene. It has an ISSN identifier of 0270-7306. Over the lifetime, 22800 publication(s) have been published receiving 2335559 citation(s).

More filters
Journal ArticleDOI
TL;DR: A series of recombinant genomes which directed expression of the enzyme chloramphenicol acetyltransferase (CAT) in mammalian cells provided a uniquely convenient system for monitoring the expression of foreign DNAs in tissue culture cells.
Abstract: We constructed a series of recombinant genomes which directed expression of the enzyme chloramphenicol acetyltransferase (CAT) in mammalian cells. The prototype recombinant in this series, pSV2-cat, consisted of the beta-lactamase gene and origin of replication from pBR322 coupled to a simian virus 40 (SV40) early transcription region into which CAT coding sequences were inserted. Readily measured levels of CAT accumulated within 48 h after the introduction of pSV2-cat DNA into African green monkey kidney CV-1 cells. Because endogenous CAT activity is not present in CV-1 or other mammalian cells, and because rapid, sensitive assays for CAT activity are available, these recombinants provided a uniquely convenient system for monitoring the expression of foreign DNAs in tissue culture cells. To demonstrate the usefulness of this system, we constructed derivatives of pSV2-cat from which part or all of the SV40 promoter region was removed. Deletion of one copy of the 72-base-pair repeat sequence in the SV40 promoter caused no significant decrease in CAT synthesis in monkey kidney CV-1 cells; however, an additional deletion of 50 base pairs from the second copy of the repeats reduced CAT synthesis to 11% of its level in the wild type. We also constructed a recombinant, pSV0-cat, in which the entire SV40 promoter region was removed and a unique HindIII site was substituted for the insertion of other promoter sequences.

7,430 citations

Journal ArticleDOI
TL;DR: A simple calcium phosphate transfection protocol and neo marker vectors that achieve highly efficient transformation of mammalian cells are described and linear DNA is almost inactive in mammalian cells.
Abstract: We describe a simple calcium phosphate transfection protocol and neo marker vectors that achieve highly efficient transformation of mammalian cells. In this protocol, the calcium phosphate-DNA complex is formed gradually in the medium during incubation with cells and precipitates on the cells. The crucial factors for obtaining efficient transformation are the pH (6.95) of the buffer used for the calcium phosphate precipitation, the CO2 level (3%) during the incubation of the DNA with the cells, and the amount (20 to 30 micrograms) and the form (circular) of DNA. In sharp contrast to the results with circular DNA, linear DNA is almost inactive. Under these conditions, 50% of mouse L(A9) cells can be stably transformed with pcDneo, a simian virus 40-based neo (neomycin resistance) marker vector. The NIH3T3, C127, CV1, BHK, CHO, and HeLa cell lines were transformed at efficiencies of 10 to 50% with this vector and the neo marker-incorporated pcD vectors that were used for the construction and transduction of cDNA expression libraries as well as for the expression of cloned cDNA in mammalian cells.

5,445 citations

Journal ArticleDOI
TL;DR: The results clearly delineate the technical boundaries of current approaches for quantitative analysis of protein expression and reveal that simple deduction from mRNA transcript analysis is insufficient to predict protein expression levels from quantitative mRNA data.
Abstract: The description of the state of a biological system by the quantitative measurement of the system constituents is an essential but largely unexplored area of biology. With recent technical advances including the development of differential display-PCR (21), of cDNA microarray and DNA chip technology (20, 27), and of serial analysis of gene expression (SAGE) (34, 35), it is now feasible to establish global and quantitative mRNA expression profiles of cells and tissues in species for which the sequence of all the genes is known. However, there is emerging evidence which suggests that mRNA expression patterns are necessary but are by themselves insufficient for the quantitative description of biological systems. This evidence includes discoveries of posttranscriptional mechanisms controlling the protein translation rate (15), the half-lives of specific proteins or mRNAs (33), and the intracellular location and molecular association of the protein products of expressed genes (32). Proteome analysis, defined as the analysis of the protein complement expressed by a genome (26), has been suggested as an approach to the quantitative description of the state of a biological system by the quantitative analysis of protein expression profiles (36). Proteome analysis is conceptually attractive because of its potential to determine properties of biological systems that are not apparent by DNA or mRNA sequence analysis alone. Such properties include the quantity of protein expression, the subcellular location, the state of modification, and the association with ligands, as well as the rate of change with time of such properties. In contrast to the genomes of a number of microorganisms (for a review, see reference 11) and the transcriptome of Saccharomyces cerevisiae (35), which have been entirely determined, no proteome map has been completed to date. The most common implementation of proteome analysis is the combination of two-dimensional gel electrophoresis (2DE) (isoelectric focusing-sodium dodecyl sulfate [SDS]-polyacrylamide gel electrophoresis) for the separation and quantitation of proteins with analytical methods for their identification. 2DE permits the separation, visualization, and quantitation of thousands of proteins reproducibly on a single gel (18, 24). By itself, 2DE is strictly a descriptive technique. The combination of 2DE with protein analytical techniques has added the possibility of establishing the identities of separated proteins (1, 2) and thus, in combination with quantitative mRNA analysis, of correlating quantitative protein and mRNA expression measurements of selected genes. The recent introduction of mass spectrometric protein analysis techniques has dramatically enhanced the throughput and sensitivity of protein identification to a level which now permits the large-scale analysis of proteins separated by 2DE. The techniques have reached a level of sensitivity that permits the identification of essentially any protein that is detectable in the gels by conventional protein staining (9, 29). Current protein analytical technology is based on the mass spectrometric generation of peptide fragment patterns that are idiotypic for the sequence of a protein. Protein identity is established by correlating such fragment patterns with sequence databases (10, 22, 37). Sophisticated computer software (8) has automated the entire process such that proteins are routinely identified with no human interpretation of peptide fragment patterns. In this study, we have analyzed the mRNA and protein levels of a group of genes expressed in exponentially growing cells of the yeast S. cerevisiae. Protein expression levels were quantified by metabolic labeling of the yeast proteins to a steady state, followed by 2DE and liquid scintillation counting of the selected, separated protein species. Separated proteins were identified by in-gel tryptic digestion of spots with subsequent analysis by microspray liquid chromatography-tandem mass spectrometry (LC-MS/MS) and sequence database searching. The corresponding mRNA transcript levels were calculated from SAGE frequency tables (35). This study, for the first time, explores a quantitative comparison of mRNA transcript and protein expression levels for a relatively large number of genes expressed in the same metabolic state. The resultant correlation is insufficient for prediction of protein levels from mRNA transcript levels. We have also compared the relative amounts of protein and mRNA with the respective codon bias values for the corresponding genes. This comparison indicates that codon bias by itself is insufficient to accurately predict either the mRNA or the protein expression levels of a gene. In addition, the results demonstrate that only highly expressed proteins are detectable by 2DE separation of total cell lysates and that therefore the construction of complete proteome maps with current technology will be very challenging, irrespective of the type of organism.

3,837 citations

Journal ArticleDOI
TL;DR: HIF-1 is implicate in the activation of VEGF transcription in hypoxic cells and this work demonstrates the involvement of Hif-1 in theactivation of V EGF transcription.
Abstract: Expression of vascular endothelial growth factor (VEGF) is induced in cells exposed to hypoxia or ischemia. Neovascularization stimulated by VEGF occurs in several important clinical contexts, including myocardial ischemia, retinal disease, and tumor growth. Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix protein that activates transcription of the human erythropoietin gene in hypoxic cells. Here we demonstrate the involvement of HIF-1 in the activation of VEGF transcription. VEGF 5'-flanking sequences mediated transcriptional activation of reporter gene expression in hypoxic Hep3B cells. A 47-bp sequence located 985 to 939 bp 5' to the VEGF transcription initiation site mediated hypoxia-inducible reporter gene expression directed by a simian virus 40 promoter element that was otherwise minimally responsive to hypoxia. When reporters containing VEGF sequences, in the context of the native VEGF or heterologous simian virus 40 promoter, were cotransfected with expression vectors encoding HIF-1alpha and HIF-1beta (ARNT [aryl hydrocarbon receptor nuclear translocator]), reporter gene transcription was much greater in both hypoxic and nonhypoxic cells than in cells transfected with the reporter alone. A HIF-1 binding site was demonstrated in the 47-bp hypoxia response element, and a 3-bp substitution eliminated the ability of the element to bind HIF-1 and to activate transcription in response to hypoxia and/or recombinant HIF-1. Cotransfection of cells with an expression vector encoding a dominant negative form of HIF-1alpha inhibited the activation of reporter transcription in hypoxic cells in a dose-dependent manner. VEGF mRNA was not induced by hypoxia in mutant cells that do not express the HIF-1beta (ARNT) subunit. These findings implicate HIF-1 in the activation of VEGF transcription in hypoxic cells.

3,523 citations

Journal ArticleDOI
TL;DR: Assaying the expression of luciferase provides a rapid and inexpensive method for monitoring promoter activity and is estimated to be from 30- to 1,000-fold more sensitive than assaying chloramphenicol acetyltransferase expression.
Abstract: The nucleotide sequence of the luciferase gene from the firefly Photinus pyralis was determined from the analysis of cDNA and genomic clones. The gene contains six introns, all less than 60 bases in length. The 5' end of the luciferase mRNA was determined by both S1 nuclease analysis and primer extension. Although the luciferase cDNA clone lacked the six N-terminal codons of the open reading frame, we were able to reconstruct the equivalent of a full-length cDNA using the genomic clone as a source of the missing 5' sequence. The full-length, intronless luciferase gene was inserted into mammalian expression vectors and introduced into monkey (CV-1) cells in which enzymatically active firefly luciferase was transiently expressed. In addition, cell lines stably expressing firefly luciferase were isolated. Deleting a portion of the 5'-untranslated region of the luciferase gene removed an upstream initiation (AUG) codon and resulted in a twofold increase in the level of luciferase expression. The ability of the full-length luciferase gene to activate cryptic or enhancerless promoters was also greatly reduced or eliminated by this 5' deletion. Assaying the expression of luciferase provides a rapid and inexpensive method for monitoring promoter activity. Depending on the instrumentation employed to detect luciferase activity, we estimate this assay to be from 30- to 1,000-fold more sensitive than assaying chloramphenicol acetyltransferase expression.

3,051 citations

Network Information
Related Journals (5)
Genes & Development
8.2K papers, 1.7M citations
93% related
The EMBO Journal
18.9K papers, 2.7M citations
93% related
Molecular Cell
8.4K papers, 1.2M citations
92% related
20.7K papers, 1.6M citations
90% related
22.2K papers, 7M citations
90% related
No. of papers from the Journal in previous years