scispace - formally typeset
Search or ask a question

Showing papers by "Fei Yan published in 2023"


Journal ArticleDOI
TL;DR: In this paper , the small-scale magnetic fields for a sample of 16 Sun-like stars and investigate the capabilities of the newly upgraded near-infrared (NIR) instrument CRIRES$^+$ at the VLT in the context of small scale magnetic field studies.
Abstract: We aim to characterise the small-scale magnetic fields for a sample of 16 Sun-like stars and investigate the capabilities of the newly upgraded near-infrared (NIR) instrument CRIRES$^+$ at the VLT in the context of small-scale magnetic field studies. Our targets also had their magnetic fields studied in the optical, which allows us to compare magnetic field properties at different spatial scales on the stellar surface and to contrast small-scale magnetic field measurements at different wavelengths. We analyse the Zeeman broadening signature for six magnetically sensitive and insensitive \ion{Fe}{I} lines in the H-band to measure small-scale magnetic fields on the stellar surface. We use polarised radiative transfer modelling and NLTE departure coefficients in combination with MCMC to determine magnetic field characteristics together with non-magnetic stellar parameters. We use two different approaches to describe small-scale magnetic fields. The first is a two-component model with a single magnetic region and a free magnetic field strength. The second model contains multiple magnetic components with fixed magnetic field strengths. We find average magnetic field strengths ranging from $\sim 0.4$ kG down to $<0.1$ kG. The results align closely with other results from high resolution NIR spectrographs such as SPIRou. We find that the small-scale fields correlate with the large-scale fields and that the small-scale fields are at least 10 times stronger than the large-scale fields inferred with Zeeman Doppler imaging. The two- and multi-component models produce systematically different results as the strong fields from the multi-component model increase the obtained mean magnetic field strength. When comparing our results with the optical measurements of small-scale fields we find a systematic offset of 2--3 times stronger fields in the optical.

Journal ArticleDOI
11 Jul 2023
TL;DR: In this article , the presence of He I in the atmosphere of HD235088 b with one transit observed with CARMENES was confirmed with multiband photometry, refined its planetary parameters, and obtained a new age estimate of the host star, placing it at 600-800 Myr.
Abstract: HD235088 (TOI-1430) is a young star known to host a sub-Neptune-sized planet candidate. We validated the planetary nature of HD235088 b with multiband photometry, refined its planetary parameters, and obtained a new age estimate of the host star, placing it at 600-800 Myr. Previous spectroscopic observations of a single transit detected an excess absorption of He I coincident in time with the planet candidate transit. Here, we confirm the presence of He I in the atmosphere of HD235088 b with one transit observed with CARMENES. We also detected hints of variability in the strength of the helium signal, with an absorption of $-$0.91$\pm$0.11%, which is slightly deeper (2$\sigma$) than the previous measurement. Furthermore, we simulated the He I signal with a spherically symmetric 1D hydrodynamic model, finding that the upper atmosphere of HD235088 b escapes hydrodynamically with a significant mass loss rate of (1.5-5) $\times$10$^{10}$g s$^{-1}$, in a relatively cold outflow, with $T$=3125$\pm$375 K, in the photon-limited escape regime. HD235088 b ($R_{p}$ = 2.045$\pm$0.075 R$_{\oplus}$) is the smallest planet found to date with a solid atmospheric detection - not just of He I but any other atom or molecule. This positions it a benchmark planet for further analyses of evolving young sub-Neptune atmospheres.

Journal ArticleDOI
TL;DR: In this paper , the authors used the cross-correlation technique to detect strong CO emission lines in both worlds and confirmed the existence of temperature inversion layers with extremely high temperatures at high altitudes.
Abstract: The dayside atmospheres of ultra-hot Jupiters (UHJs) are predicted to possess temperature inversion layers with extremely high temperatures at high altitudes. We observed the dayside thermal emission spectra of WASP-18b and WASP-76b with the new CRIRES+ high-resolution spectrograph at near-infrared wavelengths. Using the cross-correlation technique, we detected strong CO emission lines in both planets, which confirms the existence of temperature inversions on their dayside hemispheres. The two planets are the first UHJs orbiting F-type stars with CO emission lines detected; previous detections were mostly for UHJs orbiting A-type stars. Evidence of weak H2O emission signals is also found for both planets. We further applied forward-model retrievals on the detected CO lines and retrieved the temperature-pressure profiles along with the CO volume mixing ratios. The retrieved logarithmic CO mixing ratio of WASP-18b (-2.2) is slightly higher than the value predicted by the self-consistent model assuming solar abundance. For WASP-76b, the retrieved CO mixing ratio (-3.6) is broadly consistent with the value of solar abundance. In addition, we included the equatorial rotation velocity (Veq ) in the retrieval when analyzing the line profile broadening. The obtained Veq is 7.0 km/s for WASP-18b and 5.2 km/s for WASP-76b, which are consistent with the tidally locked rotational velocities.

Journal ArticleDOI
16 Mar 2023
TL;DR: In this paper , the authors used the broadband spectroscopic atlas of the solar center-to-limb variation (CLV) to investigate the impact of CLV on transmission and Rossiter-McLaughlin (RM) curves.
Abstract: Line profiles from spatially unresolved stellar observations consist of a superposition of local line profiles that result from observing the stellar atmosphere under specific viewing angles. Line profile variability caused by stellar magnetic activity or planetary transit selectively varies the weight and/or shape of profiles at individual surface positions. The effect is usually modeled with radiative transfer calculations because observations of spatially resolved stellar surfaces are not available. For the Sun, we recently obtained a broadband spectroscopic atlas of the solar center-to-limb variation (CLV). We use the atlas to study systematic differences between largely used radiative transfer calculations and solar observations. We concentrate on four strong lines useful for exoplanet transmission analysis, and we investigate the impact of CLV on transmission and Rossiter-McLaughlin (RM) curves. Solar models used to calculate synthetic spectra tend to underestimate line core depths but overestimate the effect of CLV. Our study shows that CLV can lead to significant systematic offsets in transmission curves and particularly in RM curves; transmission curves centered on individual lines are overestimated by up to a factor of two by the models, and simulations of RM curves yield amplitudes that are off by up to 5--10\,m\,s$^{-1}$ depending on the line. For the interpretation of transit observations, it is crucial for model spectra that accurately reproduce the solar CLV to become available which, for now, is the only calibration point available.

13 Jul 2023
TL;DR: In this paper , the authors obtained the transmission spectra of the extrasolar planet WASP-85Ab, a hot Jupiter in a 2.655-day orbit around a G5, V=11.2 mag host star, observed by high-resolution spectrograph ESPRESSO at the Very Large Telescope array for three transits.
Abstract: Transit spectroscopy is the most frequently used technique to reveal the atmospheric properties of exoplanets, while that at high resolution has the advantage to resolve the small Doppler shift of spectral lines, and the trace signal of the exoplanet atmosphere can be separately extracted. We obtain the transmission spectra of the extrasolar planet WASP-85Ab, a hot Jupiter in a 2.655-day orbit around a G5, V=11.2 mag host star, observed by high-resolution spectrograph ESPRESSO at the Very Large Telescope array for three transits. We present an analysis of the Rossiter-McLaughlin effect on WASP-85A, and determine a spin-orbit angle ${\lambda = -16.155^{\circ}}^{+2.916}_{-2.879}$, suggesting that the planet is in an almost aligned orbit. Combining the transmission spectra of three nights, we tentatively detected H$\alpha$ and Ca II absorption with $\gtrapprox 3\sigma$ via direct visual inspection of the transmission spectra with the Center-to-Limb variation and the Rossiter-McLaughlin effects removed, which still remain visible after excluding the cores of these strong lines with a 0.1 A mask. These spectral signals seems likely to origin from the planetary atmosphere, but we can not fully exclude their stellar origins. Via the cross-correlation analysis of a set of atoms and molecules, Li I is marginally detected at $\sim4\sigma$ level, suggesting that Li might be present in the atmosphere of WASP-85Ab.

Journal ArticleDOI
06 Apr 2023
TL;DR: In this article , the authors used the spectrograph PEPSI to observe MASCARA-1 (spectral type A8) near the secondary eclipse of the planet and obtained the detection of FeI, CrI and TiI in the atmosphere with a S/N ~7, 4 and 5 respectively.
Abstract: Hot giant planets like MASCARA-1 b are expected to have thermally inverted atmospheres, that makes them perfect laboratory for the atmospheric characterization through high-resolution spectroscopy. Nonetheless, previous attempts of detecting the atmosphere of MASCARA-1 b in transmission have led to negative results. In this paper we aim at the detection of the optical emission spectrum of MASCARA-1 b. We used the high-resolution spectrograph PEPSI to observe MASCARA-1 (spectral type A8) near the secondary eclipse of the planet. We cross-correlated the spectra with synthetic templates computed for several atomic and molecular species. We obtained the detection of FeI, CrI and TiI in the atmosphere of MASCARA-1 b with a S/N ~7, 4 and 5 respectively, and confirmed the expected systemic velocity of ~13 km/s and the radial velocity semi-amplitude of MASCARA-1 b of ~200 km/s. The detection of Ti is of particular importance in the context of the recently proposed Ti cold-trapping below a certain planetary equilibrium temperature. We confirm the presence of an the atmosphere around MASCARA-1 b through emission spectroscopy. We conclude that the atmospheric non detection in transmission spectroscopy is due to the high gravity of the planet and/or to the overlap between the planetary track and its Doppler shadow.