scispace - formally typeset
Search or ask a question

Showing papers by "François Mauguière published in 2013"


Journal ArticleDOI
TL;DR: This study provides the first direct evidence for a spinothalamic related input to the motor cortex in humans, and concludes that a representation of thermal nociceptive information does exist in human S1, although to a much lesser extent than the nonnocICEptive one.
Abstract: Intracortical evoked potentials to nonnoxious Aβ (electrical) and noxious Aδ (laser) stimuli within the human primary somatosensory (S1) and motor (M1) areas were recorded from 71 electrode sites in 9 epileptic patients. All cortical sites responding to specific noxious inputs also responded to nonnoxious stimuli, while the reverse was not always true. Evoked responses in S1 area 3b were systematic for nonnoxious inputs, but seen in only half of cases after nociceptive stimulation. Nociceptive responses were systematically recorded when electrode tracks reached the crown of the postcentral gyrus, consistent with an origin in somatosensory areas 1-2. Sites in the precentral cortex also exhibited noxious and nonnoxious responses with phase reversals indicating a local origin in area 4 (M1). We conclude that a representation of thermal nociceptive information does exist in human S1, although to a much lesser extent than the nonnociceptive one. Notably, area 3b, which responds massively to nonnoxious Aβ activation was less involved in the processing of noxious heat. S1 and M1 responses to noxious heat occurred at latencies comparable to those observed in the supra-sylvian opercular region of the same patients, suggesting a parallel, rather than hierarchical, processing of noxious inputs in S1, M1 and opercular cortex. This study provides the first direct evidence for a spinothalamic related input to the motor cortex in humans.

97 citations


Journal ArticleDOI
01 Oct 2013-Brain
TL;DR: It is postulated that the extent of the spiking volume delineated with volumetric imaging of epileptic spikes could predict the localizability of the seizure-onset zone by intracranial electroencephalography investigation and outcome of surgical treatment.
Abstract: Surgical treatment of epilepsy is a challenge for patients with non-contributive brain magnetic resonance imaging. However, surgery is feasible if the seizure-onset zone is precisely delineated through intracranial electroencephalography recording. We recently described a method, volumetric imaging of epileptic spikes, to delineate the spiking volume of patients with focal epilepsy using magnetoencephalography. We postulated that the extent of the spiking volume delineated with volumetric imaging of epileptic spikes could predict the localizability of the seizure-onset zone by intracranial electroencephalography investigation and outcome of surgical treatment. Twenty-one patients with non-contributive magnetic resonance imaging findings were included. All patients underwent intracerebral electroencephalography investigation through stereotactically implanted depth electrodes (stereo-electroencephalography) and magnetoencephalography with delineation of the spiking volume using volumetric imaging of epileptic spikes. We evaluated the spatial congruence between the spiking volume determined by magnetoencephalography and the localization of the seizure-onset zone determined by stereo-electroencephalography. We also evaluated the outcome of stereo-electroencephalography and surgical treatment according to the extent of the spiking volume (focal, lateralized but non-focal or non-lateralized). For all patients, we found a spatial overlap between the seizure-onset zone and the spiking volume. For patients with a focal spiking volume, the seizure-onset zone defined by stereo-electroencephalography was clearly localized in all cases and most patients (6/7, 86%) had a good surgical outcome. Conversely, stereo-electroencephalography failed to delineate a seizure-onset zone in 57% of patients with a lateralized spiking volume, and in the two patients with bilateral spiking volume. Four of the 12 patients with non-focal spiking volumes were operated upon, none became seizure-free. As a whole, patients having focal magnetoencephalography results with volumetric imaging of epileptic spikes are good surgical candidates and the implantation strategy should incorporate volumetric imaging of epileptic spikes results. On the contrary, patients with non-focal magnetoencephalography results are less likely to have a localized seizure-onset zone and stereo electroencephalography is not advised unless clear localizing information is provided by other presurgical investigation methods.

70 citations


Journal ArticleDOI
TL;DR: Time-frequency analyses showed an increase in power of theta-band oscillations during exclusion in the anterior insula (AI), anterior cingulate cortex (sACC), and the fusiform "face area" (FFA), suggesting that theta activity represents the neural signature of social pain.
Abstract: The feeling of being excluded from a social interaction triggers social pain, a sensation as intense as actual physical pain. Little is known about the neurophysiological underpinnings of social pain. We addressed this issue using intracranial electroencephalography in 15 patients performing a ball game where inclusion and exclusion blocks were alternated. Time-frequency analyses showed an increase in power of theta-band oscillations during exclusion in the anterior insula (AI) and posterior insula, the subgenual anterior cingulate cortex (sACC), and the fusiform "face area" (FFA). Interestingly, the AI showed an initial fast response to exclusion but the signal rapidly faded out. Activity in the sACC gradually increased and remained significant thereafter. This suggests that the AI may signal social pain by detecting emotional distress caused by the exclusion, whereas the sACC may be linked to the learning aspects of social pain. Theta activity in the FFA was time-locked to the observation of a player poised to exclude the participant, suggesting that the FFA encodes the social value of faces. Taken together, our findings suggest that theta activity represents the neural signature of social pain. The time course of this signal varies across regions important for processing emotional features linked to social information.

68 citations



Journal ArticleDOI
TL;DR: The association between periventricular [11C]FMZ increases and NSF outcome after temporal lobe resection for HS has been confirmed in an independent cohort on simple summed activity images and may be useful for individual preoperative counseling with clinically relevant accuracy.

9 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the best stimulation parameters for eliciting and recording tibialis anterior's TESmMEPs during paediatric scoliosis surgery.
Abstract: Summary Objective Transcranial electric stimulation elicited muscle motor evoked potentials (TESmMEPs) is one of the best methods for corticospinal tract's function monitoring during spine and spinal cord surgeries. A train of multipulse electric stimulation is required for eliciting TESmMEPs under general anaesthesia. Here, we investigated the best stimulation parameters for eliciting and recording tibialis anterior's TESmMEPs during paediatric scoliosis surgery. Patients and methods Numbers of pulses (NOP), inter-stimulus intervals (ISI) and current intensities allowing the best size tibialis anterior muscle's TESmMEPs under general anaesthesia, were tested and collected during 77 paediatric scoliosis surgery monitoring procedures in our hospital. Individual pulse duration was kept at 0.5 ms and stimulating electrodes were positioned at C1 and C2 (International 10-20-EEG-System) during all the tests. Results The NOP used for eliciting the best tibialis anterior TESmMEPs response was 5, 6, and 7 respectively in 21 (27%), 47 (61%) and 9 (12%) out of the 77 patients. The ISI was 2, 3 and 4 ms respectively in 13 (17%), 55 (71%) and 9 (12%) of them. The current intensity used varied from 300 to 700 V (mean: 448 ± 136 V). Conclusion Most patients had 6 as best NOP (61%) and 3 ms as best ISI (71%). These findings support that a NOP of 6 and an ISI of 3 ms should be preferentially used as optimal stimulation settings for intraoperative tibialis anterior muscle's TESmMEPs eliciting and recording during paediatric scoliosis surgery.

8 citations


Journal ArticleDOI
TL;DR: L’objectif of cet article est de presenter les resultats des etudes neurophysiologiques realisees chez les migraineux and les hypotheses physiopathologiques qui en decoulent.

5 citations


Journal ArticleDOI
TL;DR: The data suggest that, even in the absence of hippocampal MRI abnormality, ictal symptoms compatible with a temporal origin of seizures should be considered as a reliable indicator for surgery eligibility regardless of MRI lesion size.
Abstract: Purpose Mesio-temporal ictal semiology is sometimes observed in patients with large multilobar lesion. In this situation, surgery is often discarded because of the lesion size and/or suspicion of extended or multifocal epileptogenic areas. In this retrospective study we evaluated the surgical outcome of such patients in order to assess whether the electro-clinical presentation of seizures could be a prognostic marker of surgical outcome. Methods Among the temporal lobe epilepsy population explored in our department between 2000 and 2011 (240 patients), we identified 7 patients who presented an extensive lesion on brain Magnetic Resonance Imaging (MRI) (multilobar in four, hemispheric in two, and bilateral in one). All patients underwent 18 Fluorodeoxyglucose Positron Emission Tomography, which showed large, hemispheric or multilobar, areas of glucose hypometabolism. Because of the large lesion size, all patients were explored by stereoelectroencephalography (SEEG) before taking a decision regarding surgical indication. Results SEEG confirmed the temporal origin of the seizures and discarded the possibility of multiple epileptogenic zones. A temporal lobectomy, tailored on the basis of SEEG data, was proposed to the seven patients. The seven patients are classified Engel class I after the surgery (mean follow-up: 37.4±22.1 months). Conclusion Our data thus suggest that, even in the absence of hippocampal MRI abnormality, ictal symptoms compatible with a temporal origin of seizures should be considered as a reliable indicator for surgery eligibility regardless of MRI lesion size. On the basis of our findings, the mesio-temporal semiology of seizures appears as one of the most reliable markers of operability in patients with large MRI lesions. These patients should not be excluded a priori from invasive exploration and surgical treatment, even if a large portion of their lesion is likely to be left in place after surgery.

1 citations