scispace - formally typeset
Search or ask a question

Showing papers by "Gary E. Martin published in 2023"


Journal ArticleDOI
TL;DR: In this paper , the first two rows of the periodic table were selected and measured for 1H and 13C NMR chemical shifts for 50 structurally diverse small organic molecules containing atoms from DELTA50.
Abstract: Density functional theory (DFT) benchmark studies of 1H and 13C NMR chemical shifts often yield differing conclusions, likely due to non-optimal test molecules and non-standardized data acquisition. To address this issue, we carefully selected and measured 1H and 13C NMR chemical shifts for 50 structurally diverse small organic molecules containing atoms from only the first two rows of the periodic table. Our NMR dataset, DELTA50, was used to calculate linear scaling factors and to evaluate the accuracy of 73 density functionals, 40 basis sets, 3 solvent models, and 3 gauge-referencing schemes. The best performing DFT methodologies for 1H and 13C NMR chemical shift predictions were WP04/6-311++G(2d,p) and ωB97X-D/def2-SVP, respectively, when combined with the polarizable continuum solvent model (PCM) and gauge-independent atomic orbital (GIAO) method. Geometries should be optimized at the B3LYP-D3/6-311G(d,p) level including the PCM solvent model for the best accuracy. Predictions of 20 organic compounds and natural products from a separate probe set had root-mean-square deviations (RMSD) of 0.07 to 0.19 for 1H and 0.5 to 2.9 for 13C. Maximum deviations were less than 0.5 and 6.5 ppm for 1H and 13C, respectively.

1 citations


Journal ArticleDOI
TL;DR: In this paper , a sensitive and universal methodology to identify two-bond HMBC correlations using isotope shifts is presented, referred to as i-HMBC (isotope shift detection HMBC).
Abstract: Abstract HMBC is an essential NMR experiment for determining multiple bond heteronuclear correlations in small to medium-sized organic molecules, including natural products, yet its major limitation is the inability to differentiate two-bond from longer-range correlations. There have been several attempts to address this issue, but all reported approaches suffer various drawbacks, such as restricted utility and poor sensitivity. Here we present a sensitive and universal methodology to identify two-bond HMBC correlations using isotope shifts, referred to as i-HMBC (isotope shift detection HMBC). Experimental utility was demonstrated at the sub-milligram / nanomole scale with only a few hours of acquisition time required for structure elucidation of several complex proton-deficient natural products, which could not be fully elucidated by conventional 2D NMR experiments. Because i-HMBC overcomes the key limitation of HMBC without significant reduction in sensitivity or performance, i-HMBC can be used as a complement to HMBC when unambiguous identifications of two-bond correlations are needed.

Journal ArticleDOI
TL;DR: In this article , the authors reported the optimized geometry and a comparison of the calculated vs. observed 1 H and 13 C NMR chemical shift assignments for [1]benzothieno[2,3-c]naphtho[1,2-f]quinoline that confirms these suspicions.
Abstract: Early NMR studies of several heterohelicenes containing an annular nitrogen atom and a thiophene ring in their structure suggested the possibility of the lengthening of the carbon-carbon bonds in the interior of the helical turn of the molecule based on the progressive upfield shift of 13 C resonances toward the center of the helical turn. Computational chemistry capabilities when those NMR studies were performed were primitive in comparison to what is now possible. We now report the optimized geometry and a comparison of the calculated vs. observed 1 H and 13 C NMR chemical shift assignments for [1]benzothieno[2,3-c]naphtho[1,2-f]quinoline that confirms these suspicions.