scispace - formally typeset
Search or ask a question

Showing papers by "Gérard Duc published in 2002"


Journal ArticleDOI
28 Nov 2002-Nature
TL;DR: HAR1 encodes a putative serine/threonine receptor kinase, which is required for shoot-controlled regulation of root growth, nodule number, and for nitrate sensitivity of symbiotic development.
Abstract: In legumes, root nodule organogenesis is activated in response to morphogenic lipochitin oligosaccharides that are synthesized by bacteria, commonly known as rhizobia. Successful symbiotic interaction results in the formation of highly specialized organs called root nodules, which provide a unique environment for symbiotic nitrogen fixation. In wild-type plants the number of nodules is regulated by a signalling mechanism integrating environmental and developmental cues to arrest most rhizobial infections within the susceptible zone of the root. Furthermore, a feedback mechanism controls the temporal and spatial susceptibility to infection of the root system. This mechanism is referred to as autoregulation of nodulation, as earlier nodulation events inhibit nodulation of younger root tissues. Lotus japonicus plants homozygous for a mutation in the hypernodulation aberrant root (har1) locus escape this regulation and form an excessive number of nodules. Here we report the molecular cloning and expression analysis of the HAR1 gene and the pea orthologue, Pisum sativum, SYM29. HAR1 encodes a putative serine/threonine receptor kinase, which is required for shoot-controlled regulation of root growth, nodule number, and for nitrate sensitivity of symbiotic development.

529 citations


Journal ArticleDOI
TL;DR: Cultivars of Pisum sativum that differ with respect to the quantitative expression of trypsin/chymotrypsin inhibitor proteins in seeds have been examined in terms of the structure of the corresponding genes.
Abstract: Cultivars of Pisum sativum that differ with respect to the quantitative expression of trypsin/chymotrypsin inhibitor proteins in seeds have been examined in terms of the structure of the corresponding genes. The patterns of divergence in the promoter and coding sequences are described, and the divergence among these exploited for the development of facile DNA-based assays to distinguish genotypes. Quantitative effects on gene expression may be attributed to the overall gene complement and to particular promoter/coding sequence combinations, as well as to the existence of distinct active-site variants that ultimately influence protein activity. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00438-002-0667-4.

41 citations


Journal ArticleDOI
TL;DR: This work integrated the map positions of two such nodulation mutations, sym9 and sym10, into the molecular map of pea by applying molecular-marker techniques combined with bulked segregant analysis (BSA).
Abstract: Several mutants defective in the nodulation process during rhizobial or endomycorrhizal endosymbiosis of pea have been identified previously. We have integrated the map positions of two such nodulation mutations, sym9 and sym10, into the molecular map of pea by applying molecular-marker techniques combined with bulked segregant analysis (BSA). Lines P2 and P54 were found to carry alleles of sym9, line P56 carried an allele of sym10. F2 populations were derived from crosses of P2, P54 and P56, to JI281 and JI15, two of the parental lines that have been used previously to generate a molecular map of pea. sym9 was located on linkage group IV by AFLP-BSA analysis and subsequently mapped by RFLP in both F2 populations, P2 × JI281 and P54 × JI281. RFLP-BSA analysis was applied to assign sym10 to linkage group I. The RFLP marker locus, chs2, co-segregates with sym10 in the F2 population of P56 × JI15.

34 citations