scispace - formally typeset
Search or ask a question

Showing papers by "Hee Jung Choi published in 2011"


Journal ArticleDOI
13 Jan 2011-Nature
TL;DR: A camelid antibody fragment to the human β2 adrenergic receptor is generated, and an agonist-bound, active-state crystal structure of the receptor-nanobody complex is obtained, providing insights into the process of agonist binding and activation.
Abstract: G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human b2 adrenergic receptor (b2AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive b2AR structure reveals subtle changes in the binding

1,558 citations


Journal ArticleDOI
13 Jan 2011-Nature
TL;DR: A covalent agonist-bound β2AR–T4L fusion protein is designed that can be covalently tethered to a specific site on the receptor through a disulphide bond, and is capable of activating a heterotrimeric G protein.
Abstract: G-protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that modulate biological function by initiating cellular signalling in response to chemically diverse agonists. Despite recent progress in the structural biology of GPCRs, the molecular basis for agonist binding and allosteric modulation of these proteins is poorly understood. Structural knowledge of agonist-bound states is essential for deciphering the mechanism of receptor activation, and for structure-guided design and optimization of ligands. However, the crystallization of agonist-bound GPCRs has been hampered by modest affinities and rapid off-rates of available agonists. Using the inactive structure of the human β(2) adrenergic receptor (β(2)AR) as a guide, we designed a β(2)AR agonist that can be covalently tethered to a specific site on the receptor through a disulphide bond. The covalent β(2)AR-agonist complex forms efficiently, and is capable of activating a heterotrimeric G protein. We crystallized a covalent agonist-bound β(2)AR-T4L fusion protein in lipid bilayers through the use of the lipidic mesophase method, and determined its structure at 3.5 A resolution. A comparison to the inactive structure and an antibody-stabilized active structure (companion paper) shows how binding events at both the extracellular and intracellular surfaces are required to stabilize an active conformation of the receptor. The structures are in agreement with long-timescale (up to 30 μs) molecular dynamics simulations showing that an agonist-bound active conformation spontaneously relaxes to an inactive-like conformation in the absence of a G protein or stabilizing antibody.

747 citations


Journal ArticleDOI
TL;DR: Wnts bound to either portion of the LRP6 ectodomain likely bear a similar spatial relationship to Frizzled coreceptors, as demonstrated by small-angle X-ray scattering analysis of LRP 6 bound to a noninhibitory antibody fragment or to full-length Dkk1.

157 citations


Journal ArticleDOI
TL;DR: The intimate intramolecular association of the SH3 domain with the preceding SR is also observed in plectin, another plakin protein, but not in α-spectrin, suggesting that theSH3 domain of plakins contributes to the stability and rigidity of this subfamily of SR-containing proteins.

49 citations