scispace - formally typeset
Search or ask a question

Showing papers by "Herbert M. Lachman published in 2007"


Journal ArticleDOI
TL;DR: Patients with BD have an increased frequency of this CNV—primarily the duplication variant—compared with controls, which suggests that GSK3β may be involved in BD susceptibility in some individuals and that CNVs in this and other candidate genes for psychiatric disorders should be analyzed as causative functional genetic variants.
Abstract: The analysis of submicroscopic copy number variations (CNVs), also known as copy number polymorphisms (CNPs), is emerging as a new tool for understanding the genetic basis of cancer, developmental disorders, and complex traits. One area where this may be particularly useful is in the identification of genetic variants underlying schizophrenia (SZ) and bipolar disorder (BD). Linkage analysis and pharmacological studies carried out over the past decade have implicated a number of positional and physiological candidate genes. Yet, despite extensive analysis, the underlying allelic variants responsible for disease susceptibility have remained, largely, elusive. Although the borders of most CNV have not been precisely mapped, it appears that a considerable number of SZ and BD candidate genes have their coding elements disrupted by polymorphic CNVs, suggesting that these would be good variants to consider for underlying disease susceptibility. One such gene is GSK3β, which codes for glycogen synthase kinase, a key component of the Wnt signaling pathway and a target of lithium salts. A CNV in the GSK3β locus at chromosome 3q13.3 appears to disrupt the gene's 3′-coding elements. The CNV also affects two other annotated genes. We now report that patients with BD have an increased frequency of this CNV—primarily the duplication variant—compared with controls (P = 0.002). The finding suggests that GSK3β may be involved in BD susceptibility in some individuals and that CNVs in this and other candidate genes for psychiatric disorders should be analyzed as causative functional genetic variants. © 2007 Wiley-Liss, Inc.

134 citations


Journal ArticleDOI
TL;DR: The findings suggest that JARID2 should be viewed as a candidate gene for 6p22.3‐linked schizophrenia (SZ), a member of the ARID (AT‐rich interaction domain) family of transcription modulators.
Abstract: Dysbindin (DTNBP1) is a positional candidate gene for 6p22.3-linked schizophrenia (SZ). However, so far, no disease-causing alleles have been identified. DTNBP1 is immediately adjacent to JARID2, a member of the ARID (AT-rich interaction domain) family of transcription modulators. We have previously suggested that proteins which bind to AT-rich domains could play a role in SZ pathogenesis. Consequently, we explored the possibility that JARID2 itself could be a candidate gene for 6p22.3-linked SZ. We used a case control design to analyze single nucleotide polymorphisms (SNPs) and insertion/deletion variants affecting AT-rich domains in both the DTNBP1 and JARID2 genes. Three of the DTNBP1 SNPs analyzed had previously been shown to be associated with SZ. We did not detect any significant difference in allele, genotype or haplotype distribution for any of these DTNBP1 markers. However, we did detect a significant difference in allele distribution for a tetranucleotide repeat polymorphism in the JARID2 gene that affects an AT-rich domain. A significant increase in short alleles (less than 11 repeats) was found in patients with SZ (chi(2) = 7.02; P = 0.008). No other JARID2 marker displayed statistically significant allele and genotype distributions. Our findings suggest that JARID2 should be viewed as a candidate gene for 6p22.3-linked SZ.

37 citations


Journal ArticleDOI
TL;DR: The data suggest a profile of heritable clinical dimensions in addition to classic mood symptomatology in COBPD that may prove more useful for delineating the neurobiology and genetics of the disorder than standard diagnostic models.

23 citations