scispace - formally typeset
Search or ask a question

Showing papers by "Hossein Sojoudi published in 2018"



Journal ArticleDOI
TL;DR: Durable and mechanically robust bilayer poly-divinylbenzene/poly-perfluorodecylacrylate coatings using initiated chemical vapor deposition (iCVD) to reduce the adhesion strength of ice/hydrates to underlying substrates (silicon and steel) are developed.
Abstract: Ice formation and accumulation on surfaces can result in severe problems for solar photovoltaic installations, offshore oil platforms, wind turbines and aircrafts. In addition, blockage of pipelines by formation and accumulation of clathrate hydrates of natural gases has safety and economical concerns in oil and gas operations, particularly at high pressures and low temperatures such as those found in subsea or arctic environments. Practical adoption of icephobic/hydrate-phobic surfaces requires mechanical robustness and stability under harsh environments. Here, we develop durable and mechanically robust bilayer poly-divinylbenzene (pDVB)/poly-perfluorodecylacrylate (pPFDA) coatings using initiated chemical vapor deposition (iCVD) to reduce the adhesion strength of ice/hydrates to underlying substrates (silicon and steel). Utilizing a highly-cross-linked polymer (pDVB) underneath a very thin veneer of fluorine-rich polymer (pPFDA) we have designed inherently rough bilayer polymer films that can be deposited on rough steel substrates resulting in surfaces which exhibit a receding water contact angle (WCA) higher than 150° and WCA hysteresis as low as 4°. Optical profilometer measurements were performed on the films and root mean square (RMS) roughness values of Rq = 178.0 ± 17.5 nm and Rq = 312.7 ± 23.5 nm were obtained on silicon and steel substrates, respectively. When steel surfaces are coated with these smooth hard iCVD bilayer polymer films, the strength of ice adhesion is reduced from 1010 ± 95 kPa to 180 ± 85 kPa. The adhesion strength of the cyclopentane (CyC5) hydrate is also reduced from 220 ± 45 kPa on rough steel substrates to 34 ± 12 kPa on the polymer-coated steel substrates. The durability of these bilayer polymer coated icephobic and hydrate-phobic substrates is confirmed by sand erosion tests and examination of multiple ice/hydrate adhesion/de-adhesion cycles.

43 citations


Journal ArticleDOI
TL;DR: Insight is provided on several possible outcomes of viscous droplets impacting on the macrotextured surfaces and a model that will help to design the desired superamphiphobic surfaces capable of exhibiting reduced contact time and enhanced repellency of low-temperature water droplets and other viscous liquids under different impacting conditions is provided.
Abstract: The ability of hydrophobic surfaces to repel impinging liquid droplets is important in applications ranging from self-cleaning of solar panels to avoiding ice formation in freezing rain environments. In quest of maximizing water repellency, modification of droplet dynamics and subsequent reduction of contact time have been achieved by incorporating macrotexture on the superhydrophobic surfaces. However, the dynamics of low temperature water, and other viscous liquid droplets impacting anti-wetting surfaces with macrotextures is not well explored. Here, we investigate the effect of viscosity on the bouncing dynamics of liquid droplets impacting macrotextured superamphiphobic surfaces using various glycerol-water mixtures as model liquids at different impacting conditions. We demonstrate that the changes of reduction in contact times by macrotextures due to the increasing viscosity are in opposite trends at low and at high impact velocities. Since macrotexture executes substantial contact time reduction for the droplets which exhibit splitting after the impact, a preliminary model for predicting the minimum impact velocity to observe droplet splitting by macrotexture is proposed considering the important parameters of an impinging droplet along with the surface characteristics and the macrotexture size. This work aims to provide an insight on several possible outcomes of viscous droplets impacting on the macrotextured surfaces and a model that will help to design the desired superamphiphobic surfaces capable of exhibiting reduced contact time and enhanced repellency of low-temperature water droplets (such as freezing rain) and other viscous liquids (such as oils) under different impacting conditions.

32 citations


Journal ArticleDOI
TL;DR: In this paper, an electrochromic device fabricated using PEDOT:PSS and graphene as active conductive electrode films and a flexible compliant polyurethane substrate with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TSFI) additive, as ionic medium.
Abstract: We present an electrochromic device (ECD) fabricated using PEDOT:PSS and graphene as active conductive electrode films and a flexible compliant polyurethane substrate with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TSFI) additive, as ionic medium. This device with a docile, elastic intermediate substrate along with a transparency controlled PEDOT:PSS film provides a wide color contrast and fast switching rate. We harness wrinkling instability of graphene to achieve a hydrophobic nature without compromising transparency of the ECD. This mechanical self-assembly approach helps in controlling the wavelength of wrinkles generated by inducing measured prestrain conditions and regulating the modulus contrast by selection of underlying materials used, hereby controlling the extent of transparency. The reduction and oxidation switching times for the device were analyzed to be 5.76 s and 5.34 s for a 90% transmittance change at an operating DC voltage of 15 ± 0.1 V. Strain dependent studies show that the performance was robust with the device retaining switching contrasts even at 15% uniaxial strain conditions. Our device also exhibits superior antiwetting properties with an average water contact angle of 110° ± 2° at an induced radial prestrain of 30% in the graphene film. A wide range color contrast, flexibility, and antiwetting nature of the device envision its uses in smart windows, visors, and other wearable equipment where these functionalities are of outmost importance for developing new generation of smart interactive devices.

18 citations


Journal ArticleDOI
TL;DR: In this article, the barrier performance of CVD graphene films was determined using a poly(3-hexylthiophene) (P3HT) thin film optical transmission test.
Abstract: The barrier performance of CVD graphene films was determined using a poly(3-hexylthiophene) (P3HT) thin film optical transmission test. P3HT is a semiconducting polymer that photo-oxidatively degrades upon exposure to oxygen and light. The polymer is stable under ambient conditions and indoor lighting, enabling P3HT films to be deposited and encapsulated in air. P3HT’s stability under ambient conditions makes it desirable for an initial evaluation of barrier materials as a complimentary screening method in combination with conventional barrier tests. The P3HT test was used to demonstrate improved barrier performance for polymer substrates after addition of CVD graphene films. A layer-by-layer transfer method was utilized to enhance the barrier performance of monolayer graphene. Another set of absorption measurements were conducted to demonstrate the barrier performance of graphene and the degradation mechanism of graphene/P3HT over multiple wavelengths from 400 to 800 nm. The absorption spectra for graphene/polymer composite were simulated by solving Fresnel equations. The simulation results were found to be in good agreement with the measured absorption spectra. The P3HT degradation results qualitatively indicate the potential of graphene films as a possible candidate for medium performance barriers.

4 citations