scispace - formally typeset
Search or ask a question

Showing papers by "Ian Goodfellow published in 2012"


Posted Content
TL;DR: New features and efficiency improvements to Theano are presented, and benchmarks demonstrating Theano's performance relative to Torch7, a recently introduced machine learning library, and to RNNLM, a C++ library targeted at recurrent neural networks.
Abstract: Theano is a linear algebra compiler that optimizes a user's symbolically-specified mathematical computations to produce efficient low-level implementations. In this paper, we present new features and efficiency improvements to Theano, and benchmarks demonstrating Theano's performance relative to Torch7, a recently introduced machine learning library, and to RNNLM, a C++ library targeted at recurrent neural networks.

1,437 citations


01 Jan 2012
TL;DR: This paper presents Theano, a framework in the Python programming language for defining, optimizing and evaluating expressions involving high-level operations on tensors, and adds automatic symbolic differentiation, GPU support, and faster expression evaluation.
Abstract: In this paper, we present Theano 1 , a framework in the Python programming language for defining, optimizing and evaluating expressions involving high-level operations on tensors. Theano offers most of NumPy’s functionality, but adds automatic symbolic differentiation, GPU support, and faster expression evaluation. Theano is a general mathematical tool, but it was developed with the goal of facilitating research in deep learning. The Deep Learning Tutorials 2 introduce recent advances in deep learning, and showcase how Theano

249 citations


Proceedings Article
27 Jun 2012
TL;DR: In this article, the authors describe different kinds of layers they trained for learning representations in the setting of the Unsupervised and Transfer Learning Challenge, and the strategy of their team won the final phase of the challenge.
Abstract: Learning good representations from a large set of unlabeled data is a particularly challenging task. Recent work (see Bengio (2009) for a review) shows that training deep architectures is a good way to extract such representations, by extracting and disentangling gradually higher-level factors of variation characterizing the input distribution. In this paper, we describe different kinds of layers we trained for learning representations in the setting of the Unsupervised and Transfer Learning Challenge. The strategy of our team won the final phase of the challenge. It combined and stacked different one-layer unsupervised learning algorithms, adapted to each of the five datasets of the competition. This paper describes that strategy and the particular one-layer learning algorithms feeding a simple linear classifier with a tiny number of labeled training samples (1 to 64 per class).

199 citations


Proceedings Article
26 Jun 2012
TL;DR: This work introduces a new feature learning and extraction procedure based on a factor model the authors call spike-and-slab sparse coding (S3C), and presents a novel inference procedure for appropriate for use with GPUs which allows to dramatically increase both the training set size and the amount of latent factors that S3C may be trained with.
Abstract: We consider the problem of object recognition with a large number of classes. In order to overcome the low amount of labeled examples available in this setting, we introduce a new feature learning and extraction procedure based on a factor model we call spike-and-slab sparse coding (S3C). Prior work on S3C has not prioritized the ability to exploit parallel architectures and scale S3C to the enormous problem sizes needed for object recognition. We present a novel inference procedure for appropriate for use with GPUs which allows us to dramatically increase both the training set size and the amount of latent factors that S3C may be trained with. We demonstrate that this approach improves upon the supervised learning capabilities of both sparse coding and the spike-and-slab Restricted Boltzmann Machine (ssRBM) on the CIFAR-10 dataset. We use the CIFAR-100 dataset to demonstrate that our method scales to large numbers of classes better than previous methods. Finally, we use our method to win the NIPS 2011 Workshop on Challenges In Learning Hierarchical Models' Transfer Learning Challenge.

89 citations


Posted Content
TL;DR: Spike-and-slab sparse coding (S3C) as discussed by the authors is a feature learning and extraction procedure based on a factor model for object recognition with a large number of classes.
Abstract: We consider the problem of object recognition with a large number of classes. In order to overcome the low amount of labeled examples available in this setting, we introduce a new feature learning and extraction procedure based on a factor model we call spike-and-slab sparse coding (S3C). Prior work on S3C has not prioritized the ability to exploit parallel architectures and scale S3C to the enormous problem sizes needed for object recognition. We present a novel inference procedure for appropriate for use with GPUs which allows us to dramatically increase both the training set size and the amount of latent factors that S3C may be trained with. We demonstrate that this approach improves upon the supervised learning capabilities of both sparse coding and the spike-and-slab Restricted Boltzmann Machine (ssRBM) on the CIFAR-10 dataset. We use the CIFAR-100 dataset to demonstrate that our method scales to large numbers of classes better than previous methods. Finally, we use our method to win the NIPS 2011 Workshop on Challenges In Learning Hierarchical Models? Transfer Learning Challenge.

61 citations


Posted Content
TL;DR: This work derives a structured variational inference procedure and employs a variational EM training algorithm to improve upon the supervised learning capabilities of both sparse coding and the ssRBM on the CIFAR-10 dataset.
Abstract: We consider the problem of using a factor model we call {\em spike-and-slab sparse coding} (S3C) to learn features for a classification task. The S3C model resembles both the spike-and-slab RBM and sparse coding. Since exact inference in this model is intractable, we derive a structured variational inference procedure and employ a variational EM training algorithm. Prior work on approximate inference for this model has not prioritized the ability to exploit parallel architectures and scale to enormous problem sizes. We present an inference procedure appropriate for use with GPUs which allows us to dramatically increase both the training set size and the amount of latent factors. We demonstrate that this approach improves upon the supervised learning capabilities of both sparse coding and the ssRBM on the CIFAR-10 dataset. We evaluate our approach's potential for semi-supervised learning on subsets of CIFAR-10. We demonstrate state-of-the art self-taught learning performance on the STL-10 dataset and use our method to win the NIPS 2011 Workshop on Challenges In Learning Hierarchical Models' Transfer Learning Challenge.

61 citations


Posted Content
TL;DR: A new method for training deep Boltzmann machines jointly is introduced that requires an initial learning pass that trains the deep BoltZmann machine greedily, one layer at a time, or do not perform well on classifi- cation tasks.
Abstract: We introduce a new method for training deep Boltzmann machines jointly. Prior methods require an initial learning pass that trains the deep Boltzmann machine greedily, one layer at a time, or do not perform well on classifi- cation tasks.

30 citations