scispace - formally typeset
Search or ask a question

Showing papers by "Isabelle Dugail published in 1992"


Journal ArticleDOI
TL;DR: It is concluded that FAS overactivity, shown here to be a life-long and general feature of all adipose tissue sites in the obese rat, arises primarily from FAS gene overtranscription.

61 citations


Journal ArticleDOI
16 Nov 1992-Gene
TL;DR: A rat lipoprotein lipase (LPL)-encoding cDNA has been entirely sequenced and compared to the sequences of all the LPL cDNAs reported in other species, and high homology was found between the coding exons.

38 citations


Journal ArticleDOI
TL;DR: Results demonstrate that the obese genotype exerts a co-ordinated control on the expression of these genes in adipose tissue, mainly at the transcriptional level.
Abstract: The genetically obese Zucker rat displays excessive fat storage capacity which is due to a tissue-specific increase in the activities of a number of lipid storage-related enzymes in adipose tissue. The aim of this study was to investigate the molecular mechanism responsible for this phenomenon. Lean (Fa/fa) and obese (fa/fa) Zucker rats were studied during the early stages of adipose tissue overdevelopment, both before (at 16 days of age) and after (at 30 days of age) the emergence of hyperinsulinaemia, in order to delineate the effects of the fatty genotype independently of those of hyperinsulinaemia. Lipoprotein lipase (LPL), glycerophosphate dehydrogenase (GPDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and malic enzyme (ME) mRNA levels in the adipose tissue of lean and obese rats were assessed by Northern blot analysis, and the relative transcription rates of the corresponding genes were compared in the two genotypes by a nuclear run-on assay. In normoinsulinaemic 16-day-old pre-obese rats, mRNA levels were increased over control values (LPL, 5-fold; ME, 2-fold; GAPDH, 3-fold), in close correlation with genotype-mediated differences in enzyme activities. Stimulation of the transcription rates of the ME and GAPDH genes was observed in obese rats, which could fully account for differences in steady-state mRNA levels. At this age, GPDH activity, mRNA level and transcription rate were similar in the two genotypes. In hyperinsulinaemic 30-day-old obese rats, a 6-7-fold increase in both mRNA and the transcription rate of GPDH emerged, together with an amplification of the genotype-mediated differences observed in younger animals (GAPDH, 6-fold; ME, 7.9-fold; LPL, 10-fold). These results demonstrate that the obese genotype exerts a co-ordinated control on the expression of these genes in adipose tissue, mainly at the transcriptional level. This genotype effect is greatly amplified by the development of hyperinsulinaemia.

29 citations


Journal ArticleDOI
TL;DR: Most of the differences between the lean and obese rats are detected at 30 days of age, characterized by an increase in the accumulation of several peptides in the adipose tissue of obese rats, in good agreement with the multiple biochemical changes previously identified at this stage of the disease.
Abstract: Using two-dimensional electrophoresis on total extracts of adipose tissue from young lean (Fa/fa) and obese (fa/fa) Zucker rats, we have investigated the existence of early events at the protein level, before obvious obesity. Our results indicate that the two genotypes do not differ at 3 days of age in terms of polypeptide pattern. By 7 days of age, two polypeptides are transiently repressed in the fatty genotype, leading us to suggest their potential involvement in the onset of obesity. However, most of the differences between the lean and obese rats are detected at 30 days of age, characterized by an increase in the accumulation of several peptides in the adipose tissue of obese rats, in good agreement with the multiple biochemical changes previously identified at this stage of the disease. These results present evidence of new peptides that may be of interest in the study of the obesity syndrome.

1 citations