scispace - formally typeset
Search or ask a question

Showing papers by "Jacques Côté published in 2013"


Journal ArticleDOI
TL;DR: A crucial new role for associated proteins within HAT complexes, previously thought to be intrinsic to the catalytic subunit, is uncovered.
Abstract: Histone acetyltransferases (HATs) assemble into multisubunit complexes in order to target distinct lysine residues on nucleosomal histones. Here, we characterize native HAT complexes assembled by the BRPF family of scaffold proteins. Their plant homeodomain (PHD)–Zn knuckle–PHD domain is essential for binding chromatin and is restricted to unmethylated H3K4, a specificity that is reversed by the associated ING subunit. Native BRPF1 complexes can contain either MOZ/MORF or HBO1 as catalytic acetyltransferase subunit. Interestingly, while the previously reported HBO1 complexes containing JADE scaffold proteins target histone H4, the HBO1–BRPF1 complex acetylates only H3 in chromatin. We mapped a small region to the N terminus of scaffold proteins responsible for histone tail selection on chromatin. Thus, alternate choice of subunits associated with HBO1 can switch its specificity between H4 and H3 tails. These results uncover a crucial new role for associated proteins within HAT complexes, previously thought to be intrinsic to the catalytic subunit.

137 citations


Journal ArticleDOI
TL;DR: A mass spectrometry-based method is developed that generates a KAT protein interaction network from which a unique link between NuA4 and the spindle pole body is identified and may serve as a valuable tool in connecting KATs with their cellular targets.
Abstract: Recent global proteomic and genomic studies have determined that lysine acetylation is a highly abundant posttranslational modification. The next challenge is connecting lysine acetyltransferases (KATs) to their cellular targets. We hypothesize that proteins that physically interact with KATs may not only predict the cellular function of the KATs but may be acetylation targets. We have developed a mass spectrometry-based method that generates a KAT protein interaction network from which we simultaneously identify both in vivo acetylation sites and in vitro acetylation sites. This modified chromatin-immunopurification coupled to an in vitro KAT assay with mass spectrometry (mChIP-KAT-MS) was applied to the Saccharomyces cerevisiae KAT nucleosome acetyltransferase of histone H4 (NuA4). Using mChIP-KAT-MS, we define the NuA4 interactome and in vitro-enriched acetylome, identifying over 70 previously undescribed physical interaction partners for the complex and over 150 acetyl lysine residues, of which 108 are NuA4-specific in vitro sites. Through this method we determine NuA4 acetylation of its own subunit Epl1 is a means of self-regulation and identify a unique link between NuA4 and the spindle pole body. Our work demonstrates that this methodology may serve as a valuable tool in connecting KATs with their cellular targets.

43 citations


Journal ArticleDOI
TL;DR: The NuA4 complex is important for gene expression but also for the efficient repair of DNA double strand breaks (DSBs) in vivo, and it was tempting to postulate that DSB sensing factors known to recruit ATM family PIKK factors could be responsible for NuA 4 recruitment.
Abstract: Background The NuA4 histone acetyltransferase is a highly conserved multisubunit complex responsible for acetylation of nucleosomal histone H4 and H2A. Mutations in different NuA4 subunits create cell cycle arrest or delay in G2/M. The NuA4 complex is important for gene expression but also the efficient repair of DNA double strand breaks (DSBs) in vivo. NuA4 is rapidly recruited to chromatin surrounding a DSB in vivo at the same time histone H2A (X) is phosphorylated in the neighboring region (g-H2AX). While we have shown that NuA4 can interact with phosphorylated H2A(X), we speculated that another interaction was required for the initial recruitment of NuA4 at the break. Based on the presence of an ATM-related factor within NuA4, the subunitTra1 (TRRAP), it was tempting to postulate that DSB sensing factors known to recruit ATM family PIKK factors could be responsible for NuA4 recruitment.

2 citations