scispace - formally typeset
Search or ask a question

Showing papers by "James Arthos published in 2004"


Journal ArticleDOI
TL;DR: In HIVCM tissues, only inflammatory cells, but not endothelial cells or cardiomyocytes, displayed HIV-1 DNA and RNA; however, macrophages, lymphocytes, and—in a patchy fashion—cardiomyocyte apoptosis and endothelium exhibited virus envelope protein gp 120.
Abstract: We examined heart tissues of AIDS patients with or without HIV cardiomyopathy (HIVCM) by immunohistochemistry, in situ polymerase chain reaction, in situ riboprobe hybridization, and the TUNEL technique for apoptosis. In HIVCM tissues, only inflammatory cells, but not endothelial cells or cardiomyocytes, displayed HIV-1 DNA and RNA. However, macrophages, lymphocytes, and--in a patchy fashion--cardiomyocytes and endothelial cells exhibited virus envelope protein gp120. Macrophages infiltrated the myocardium in a perivascular fashion and expressed tumor necrosis factor family ligands; adjacent cardiomyocytes suffered apoptosis. In vitro HIV-1 strongly invaded neonatal rat ventricular myocytes (NRVMs) and coronary artery endothelial cells (CAECs) and induced microvilli but did not replicate. HIV-1, gp120, or Tat induced Erk 1/2 phosphorylation, activation of caspase-3, and apoptosis of NRVMs and CAECs; all of these were inhibited by a MAPK/ERK-kinase (MEK) inhibitor U0126. The pathogenesis of HIVCM involves HIV-1 replication in inflammatory cells and induction of cardiomyocyte apoptosis by (1) the extrinsic pathway through apoptotic ligands and (2) the intrinsic pathway through direct virus entry and gp120- and Tat-proapoptotic signaling.

71 citations


Journal ArticleDOI
TL;DR: HIV-1 and gp 120 induce toxicity through induction of cardiomyocyte and endothelial cell apoptosis and HAART drugs disrupt endothelium cell junctions and mitochondria and could cause vascular damage.
Abstract: HIV-1 infection is associated with serious cardiovascular complications, but the roles of HIV-1, viral proteins, and highly active antiretroviral therapy (HAART) drugs are not understood. HAART decreases the overall risk of heart disease but leads to metabolic disturbances and possibly coronary artery disease. We investigated toxicities of HIV-1, HIV-1 glycoprotein 120 (gp120), and HAART drugs for human coronary artery endothelial cells (CAECs), brain microvascular endothelial cells, and neonatal rat ventricular myocytes (NRVMs). HIV-1 and gp120, but not azidothymidine (AZT), induced apoptosis of NRVMs and CAECs. Ethylisothiourea, an inhibitor of nitric oxide synthase, inhibited apoptosis induction by gp120. AZT, HIV-1, and gp120 all damaged mitochondria of cardiomyocytes. HAART drugs, AZT, and indinavir, but not HIV-1, produced intercellular gaps between confluent endothelial cells and decreased transendothelial electrical resistance. In conclusion, HIV-1 and gp120 induce toxicity through induction of cardiomyocyte and endothelial cell apoptosis. HAART drugs disrupt endothelial cell junctions and mitochondria and could cause vascular damage.

66 citations


Journal ArticleDOI
TL;DR: It is demonstrated that gp120, when complexed to anti-CD4bd antibodies, becomes more resistant to proteolysis by lysosomal enzymes from antigen-presenting cells such that peptide epitopes are not released and presented efficiently by major histocompatibility complex class II molecules to gp120-specific CD4 T cells.
Abstract: T-helper responses are important for controlling chronic viral infections, yet T-helper responses specific to human immunodeficiency virus type 1 (HIV-1), particularly to envelope glycoproteins, are lacking in the vast majority of HIV-infected individuals. It was previously shown that the presence of antibodies to the CD4-binding domain (CD4bd) of HIV-1 glycoprotein 120 (gp120) prevents T-helper responses to gp120, but their suppressive mechanisms were undefined (C. E. Hioe et al., J. Virol. 75:10950-10957, 2001). The present study demonstrates that gp120, when complexed to anti-CD4bd antibodies, becomes more resistant to proteolysis by lysosomal enzymes from antigen-presenting cells such that peptide epitopes are not released and presented efficiently by major histocompatibility complex class II molecules to gp120-specific CD4 T cells. Antibodies to other gp120 regions do not confer this effect. Thus, HIV may evade anti-viral T-helper responses by inducing and exploiting antibodies that conceal the virus envelope antigens from T cells.

24 citations