scispace - formally typeset
Search or ask a question
Author

Jan-Olof Eklundh

Bio: Jan-Olof Eklundh is an academic researcher from Royal Institute of Technology. The author has contributed to research in topics: Active vision & Image segmentation. The author has an hindex of 28, co-authored 100 publications receiving 3093 citations. Previous affiliations of Jan-Olof Eklundh include University of Maryland, College Park.


Papers
More filters
Book ChapterDOI
07 May 2006
TL;DR: It is shown how symmetric pairs of features can be efficiently detected, how the symmetry bonding each pair is extracted and evaluated, and how these can be grouped into symmetric constellations that specify the dominant symmetries present in the image.
Abstract: A novel and efficient method is presented for grouping feature points on the basis of their underlying symmetry and characterising the symmetries present in an image. We show how symmetric pairs of features can be efficiently detected, how the symmetry bonding each pair is extracted and evaluated, and how these can be grouped into symmetric constellations that specify the dominant symmetries present in the image. Symmetries over all orientations and radii are considered simultaneously, and the method is able to detect local or global symmetries, locate symmetric figures in complex backgrounds, detect bilateral or rotational symmetry, and detect multiple incidences of symmetry.

387 citations

Book ChapterDOI
11 May 2004
TL;DR: A first contribution of this paper is to further advance the state-of-the-art by applying Support Vector Machines to this problem and record the best results to date on the CUReT database.
Abstract: Classifying materials from their appearance is a challenging problem, especially if illumination and pose conditions are permitted to change: highlights and shadows caused by 3D structure can radically alter a sample’s visual texture. Despite these difficulties, researchers have demonstrated impressive results on the CUReT database which contains many images of 61 materials under different conditions. A first contribution of this paper is to further advance the state-of-the-art by applying Support Vector Machines to this problem. To our knowledge, we record the best results to date on the CUReT database.

380 citations

Journal ArticleDOI
TL;DR: A method is given for transposition of 2n×2n data matrices, larger than available high-speed storage, that should be stored on an external storage device, allowing direct access.
Abstract: A method is given for transposition of 2n×2n data matrices, larger than available high-speed storage. The data should be stored on an external storage device, allowing direct access. The performance of the algorithm depends on the size of the main storage, which at least should hold 2n+1 points. In that case the matrix has to be read in and written out n times.

154 citations

Proceedings ArticleDOI
29 Oct 2001
TL;DR: An algorithm that identifies range readings in areas that was detected earlier as free is described, and is able to track a moving person walking around, while consuming only about 2% of the available processing power.
Abstract: In the field of computer vision, the detection and tracking of moving objects from a moving observer is a complex and computationally demanding task. Using a laser range scanner instead of a camera, the problem can be simplified dramatically. An algorithm that identifies range readings in areas that was detected earlier as free is described. This is done without incorporating any gridmaps that are inherently memory and computationally consuming. The algorithm is robust from the real-time test in a furnished living room. It is able to track a moving person walking around, while consuming only about 2% of the available processing power.

129 citations

Journal ArticleDOI
TL;DR: A vision system for robotic object manipulation tasks in natural, domestic environments and one important property is that the step from object recognition to pose estimation is completely automatic combining both appearance and geometric models.
Abstract: In this paper, we present a vision system for robotic object manipulation tasks in natural, domestic environments. Given complex fetch-and-carry robot tasks, the issues related to the whole detect-approach-grasp loop are considered. Our vision system integrates a number of algorithms using monocular and binocular cues to achieve robustness in realistic settings. The cues are considered and used in connection to both foveal and peripheral vision to provide depth information, segmentation of the object(s) of interest, object recognition, tracking and pose estimation. One important property of the system is that the step from object recognition to pose estimation is completely automatic combining both appearance and geometric models. Experimental evaluation is performed in a realistic indoor environment with occlusions, clutter, changing lighting and background conditions.

118 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A generalized gray-scale and rotation invariant operator presentation that allows for detecting the "uniform" patterns for any quantization of the angular space and for any spatial resolution and presents a method for combining multiple operators for multiresolution analysis.
Abstract: Presents a theoretically very simple, yet efficient, multiresolution approach to gray-scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing that certain local binary patterns, termed "uniform," are fundamental properties of local image texture and their occurrence histogram is proven to be a very powerful texture feature. We derive a generalized gray-scale and rotation invariant operator presentation that allows for detecting the "uniform" patterns for any quantization of the angular space and for any spatial resolution and presents a method for combining multiple operators for multiresolution analysis. The proposed approach is very robust in terms of gray-scale variations since the operator is, by definition, invariant against any monotonic transformation of the gray scale. Another advantage is computational simplicity as the operator can be realized with a few operations in a small neighborhood and a lookup table. Experimental results demonstrate that good discrimination can be achieved with the occurrence statistics of simple rotation invariant local binary patterns.

14,245 citations

Book ChapterDOI
07 May 2006
TL;DR: A novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Robust Features), which approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster.
Abstract: In this paper, we present a novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Robust Features). It approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster. This is achieved by relying on integral images for image convolutions; by building on the strengths of the leading existing detectors and descriptors (in casu, using a Hessian matrix-based measure for the detector, and a distribution-based descriptor); and by simplifying these methods to the essential. This leads to a combination of novel detection, description, and matching steps. The paper presents experimental results on a standard evaluation set, as well as on imagery obtained in the context of a real-life object recognition application. Both show SURF's strong performance.

13,011 citations

Journal ArticleDOI
TL;DR: The working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap are discussed, as well as aspects of system engineering: databases, system architecture, and evaluation.
Abstract: Presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for image retrieval systems. Step one of the review is image processing for retrieval sorted by color, texture, and local geometry. Features for retrieval are discussed next, sorted by: accumulative and global features, salient points, object and shape features, signs, and structural combinations thereof. Similarity of pictures and objects in pictures is reviewed for each of the feature types, in close connection to the types and means of feedback the user of the systems is capable of giving by interaction. We briefly discuss aspects of system engineering: databases, system architecture, and evaluation. In the concluding section, we present our view on: the driving force of the field, the heritage from computer vision, the influence on computer vision, the role of similarity and of interaction, the need for databases, the problem of evaluation, and the role of the semantic gap.

6,447 citations

Journal ArticleDOI
TL;DR: 40 selected thresholding methods from various categories are compared in the context of nondestructive testing applications as well as for document images, and the thresholding algorithms that perform uniformly better over nonde- structive testing and document image applications are identified.
Abstract: We conduct an exhaustive survey of image thresholding methods, categorize them, express their formulas under a uniform notation, and finally carry their performance comparison. The thresholding methods are categorized according to the information they are exploiting, such as histogram shape, measurement space clustering, entropy, object attributes, spatial correlation, and local gray-level surface. 40 selected thresholding methods from various categories are compared in the context of nondestructive testing applications as well as for document images. The comparison is based on the combined performance measures. We identify the thresholding algorithms that perform uniformly better over nonde- structive testing and document image applications. © 2004 SPIE and IS&T. (DOI: 10.1117/1.1631316)

4,543 citations

Journal ArticleDOI
TL;DR: It is shown how the proposed methodology applies to the problems of blob detection, junction detection, edge detection, ridge detection and local frequency estimation and how it can be used as a major mechanism in algorithms for automatic scale selection, which adapt the local scales of processing to the local image structure.
Abstract: The fact that objects in the world appear in different ways depending on the scale of observation has important implications if one aims at describing them. It shows that the notion of scale is of utmost importance when processing unknown measurement data by automatic methods. In their seminal works, Witkin (1983) and Koenderink (1984) proposed to approach this problem by representing image structures at different scales in a so-called scale-space representation. Traditional scale-space theory building on this work, however, does not address the problem of how to select local appropriate scales for further analysis. This article proposes a systematic methodology for dealing with this problem. A framework is presented for generating hypotheses about interesting scale levels in image data, based on a general principle stating that local extrema over scales of different combinations of γ-normalized derivatives are likely candidates to correspond to interesting structures. Specifically, it is shown how this idea can be used as a major mechanism in algorithms for automatic scale selection, which adapt the local scales of processing to the local image structure. Support for the proposed approach is given in terms of a general theoretical investigation of the behaviour of the scale selection method under rescalings of the input pattern and by integration with different types of early visual modules, including experiments on real-world and synthetic data. Support is also given by a detailed analysis of how different types of feature detectors perform when integrated with a scale selection mechanism and then applied to characteristic model patterns. Specifically, it is described in detail how the proposed methodology applies to the problems of blob detection, junction detection, edge detection, ridge detection and local frequency estimation. In many computer vision applications, the poor performance of the low-level vision modules constitutes a major bottleneck. It is argued that the inclusion of mechanisms for automatic scale selection is essential if we are to construct vision systems to automatically analyse complex unknown environments.

2,942 citations