scispace - formally typeset
Search or ask a question

Showing papers by "Jaume Reventós published in 2004"


Journal ArticleDOI
01 Jul 2004-Gut
TL;DR: T-PA specifically binds to annexin II on the extracellular membrane of pancreatic cancer cells where it activates local plasmin production and tumour cell invasion.
Abstract: Background: Overexpression of tissue plasminogen activator (t-PA) in pancreatic cancer cells promotes invasion and proliferation in vitro and tumour growth and angiogenesis in vivo. Aims: To understand the mechanisms by which t-PA favours cancer progression, we analysed the surface membrane proteins responsible for binding specifically t-PA and studied the contribution of this interaction to the t-PA promoted invasion of pancreatic cancer cells. Methods: The ability of t-PA to activate plasmin and a fluorogenic plasmin substrate was used to analyse the nature of the binding of active t-PA to cell surfaces. Specific binding was determined in two pancreatic cancer cell lines (SK-PC-1 and PANC-1), and complex formation analysed by co-immunoprecipitation experiments and co-immunolocalisation in tumours. The functional role of the interaction was studied in Matrigel invasion assays. Results: t-PA bound to PANC-1 and SK-PC-1 cells in a specific and saturable manner while maintaining its activity. This binding was competitively inhibited by specific peptides interfering with the interaction of t-PA with annexin II. The t-PA/annexin II interaction on pancreatic cancer cells was also supported by co-immunoprecipitation assays using anti-t-PA antibodies and, reciprocally, with antiannexin II antibodies. In addition, confocal microscopy showed t-PA and annexin II colocalisation in tumour tissues. Finally, disruption of the t-PA/annexin II interaction by a specific hexapeptide significantly decreased the invasive capacity of SK-PC-1 cells in vitro. Conclusion: t-PA specifically binds to annexin II on the extracellular membrane of pancreatic cancer cells where it activates local plasmin production and tumour cell invasion. These findings may be clinically relevant for future therapeutic strategies based on specific drugs that counteract the activity of t-PA or its receptor annexin II, or their interaction at the surface level.

123 citations


Journal ArticleDOI
TL;DR: Tissue array immunohistochemistry showed that RUNX1/AML1 up-regulation correlates to the process of tumorigenesis, from normal atrophic endometrium to simple and complex hyperplasia and then, on to carcinoma.
Abstract: Endometrial carcinoma is the most common gynecological malignant disease in industrialized countries. Two clinicopathological types of endometrial carcinoma have been described, based on estrogen relation and grade: endometrioid carcinoma (EEC) and non-EEC (NEEC). Some of the molecular events that occur during the development of endometrial carcinoma have been characterized, showing a dualistic genetic model for EEC and NEEC. However, the molecular bases for endometrial tumorigenesis are not clearly elucidated. In the present work, we attempted to identify new genes that could trigger cell transformation in EEC. We analyzed the differential gene expression profile between tumoral and nontumoral endometrial specimens with cDNA array hybridization. Among the 53 genes for which expression was found to be altered in EEC, the acute myeloid leukemia proto-oncogene, RUNX1/AML1, was one of the most highly up-regulated. The gene expression levels of RUNX1/AML1 were quantified by real-time quantitative PCR, and protein levels were characterized by tissue array immunohistochemistry. Real-time quantitative PCR validated RUNX1/AML1 up-regulation in EEC and demonstrated a specific and significantly stronger up-regulation in those tumor stages associated with myometrial invasion. Furthermore, tissue array immunohistochemistry showed that RUNX1/AML1 up-regulation correlates to the process of tumorigenesis, from normal atrophic endometrium to simple and complex hyperplasia and then, on to carcinoma. These results demonstrate for the first time the up-regulation of RUNX1/AML1 in EEC correlating with the initial steps of myometrial infiltration.

78 citations


Journal ArticleDOI
TL;DR: The present results raise the possibility that cytoplasmic ERbeta participates in the apoptotic process of pachytene spermatocytes induced by MAA, preventing the progression of the first meiotic division, however, remains to be determined.
Abstract: Degeneration of primary spermatocytes by apoptosis occurs during normal spermatogenesis, as well as in several pathological conditions, including exposure to specific testicular toxicants. The mechanisms that regulate the death and survival of primary spermatocytes, however, are still not well understood. The recent localization of estrogen receptor beta (ERbeta) and P450 aromatase in pachytene spermatocytes suggests a role for estrogens in this step of spermatogenesis. Using a well-known model of pachytene spermatocyte apoptosis in adult rats consisting of the administration of methoxyacetic acid (MAA), we investigated the participation of ERbeta during the initial phase of apoptosis, prior to germ cell loss. Adult rats were treated with a single intraperitoneal dose of MAA, and DNA laddering analysis confirmed apoptotic cell death in the testis. In enriched germ cell fractions and testis from MAA-treated animals, ERbeta mRNA increased significantly at 3 and 6 hours, respectively. Next, stage-specific induction of ERbeta mRNA was demonstrated by use of laser capture microdissection of seminiferous tubules in combination with semiquantitative reverse transcription-polymerase chain reaction. The ERbeta protein also increased significantly after 6 hours and was mainly immunolocalized in the cytoplasm of pachytene spermatocytes of afflicted tubules. The cytoplasmic localization was confirmed by Western blot analysis of isolated cytoplasmic and nuclear fractions of testicular extracts. Finally, the MAA activation of ERbeta was tested in vitro in HepG2 cells cotransfected with ERbeta and a reporter construct that contained a consensus estrogen responsive element. Addition of MAA at similar doses used in vivo elicited a similar estrogenic activation as did estradiol at 1 nmol/L concentration. The present results raise the possibility that cytoplasmic ERbeta participates in the apoptotic process of pachytene spermatocytes induced by MAA. Whether MAA interacts with ERbeta in the cytoplasm of primary spermatocytes, preventing the progression of the first meiotic division, however, remains to be determined.

41 citations


Journal ArticleDOI
TL;DR: The present results are consistent with the interpretation that ERβ is associated with the events that regulate negatively the progression of meiosis or that lead to spermatocyte apoptosis.
Abstract: Progression of the first meiotic division in male germ cells is regulated by a variety of factors, including androgens and possibly estrogens. When this regulation fails, meiosis is arrested and primary spermatocytes degenerate by apoptosis. Earlier studies showed that overexpression of rat androgen-binding protein (ABP) in the testis of transgenic mice results in a partial meiotic arrest and apoptosis of pachytene spermatocytes. In view of the recent localization of estrogen receptor β (ERβ) in primary spermatocytes and data suggesting the ability of ERβ to repress cellular proliferation, we tested the hypothesis that variations in the testicular steroid microenvironment caused by excess ABP produce changes in ERβ expression in this cellular type that could be associated to the meiotic arrest and, eventually, to the induction of germ cell apoptosis observed in the ABP transgenic mice. Increased levels of ERβ mRNA and protein were demonstrated in the testis of rat ABP transgenic mice compared wit...

33 citations