scispace - formally typeset
Search or ask a question

Showing papers by "Jo Dunkley published in 2006"


Journal ArticleDOI
TL;DR: In this article, a simple cosmological model with only six parameters (matter density, Omega_m h^2, baryon density, BH 2, Hubble Constant, H_0, amplitude of fluctuations, sigma_8, optical depth, tau, and a slope for the scalar perturbation spectrum, n_s) was proposed to fit the three-year WMAP temperature and polarization data.
Abstract: A simple cosmological model with only six parameters (matter density, Omega_m h^2, baryon density, Omega_b h^2, Hubble Constant, H_0, amplitude of fluctuations, sigma_8, optical depth, tau, and a slope for the scalar perturbation spectrum, n_s) fits not only the three year WMAP temperature and polarization data, but also small scale CMB data, light element abundances, large-scale structure observations, and the supernova luminosity/distance relationship. Using WMAP data only, the best fit values for cosmological parameters for the power-law flat LCDM model are (Omega_m h^2, Omega_b h^2, h, n_s, tau, sigma_8) = 0.1277+0.0080-0.0079, 0.02229+-0.00073, 0.732+0.031-0.032, 0.958+-0.016, 0.089+-0.030, 0.761+0.049-0.048). The three year data dramatically shrink the allowed volume in this six dimensional parameter space. Assuming that the primordial fluctuations are adiabatic with a power law spectrum, the WMAP data_alone_ require dark matter, and favor a spectral index that is significantly less than the Harrison-Zel'dovich-Peebles scale-invariant spectrum (n_s=1, r=0). Models that suppress large-scale power through a running spectral index or a large-scale cut-off in the power spectrum are a better fit to the WMAP and small scale CMB data than the power-law LCDM model; however, the improvement in the fit to the WMAP data is only Delta chi^2 = 3 for 1 extra degree of freedom. The combination of WMAP and other astronomical data yields significant constraints on the geometry of the universe, the equation of state of the dark energy, the gravitational wave energy density, and neutrino properties. Consistent with the predictions of simple inflationary theories, we detect no significant deviations from Gaussianity in the CMB maps.

6,295 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present three-year full-sky maps of the polarization and analyze them for foreground emission and cosmological implications and find that the limit from the polarization signals alone is r<2.2 (95% CL) corresponding to a limit on the cosmic density of gravitational waves of Omega{GW}h^2 < 5 times 10−12.
Abstract: The Wilkinson Microwave Anisotropy Probe WMAP has mapped the entire sky in five frequency bands between 23 and 94 GHz with polarization sensitive radiometers. We present three-year full-sky maps of the polarization and analyze them for foreground emission and cosmological implications. These observations open up a new window for understanding the universe. WMAP observes significant levels of polarized foreground emission due to both Galactic synchrotron radiation and thermal dust emission. The least contaminated channel is at 61 GHz. Informed by a model of the Galactic foreground emission, we subtract the foreground emission from the maps. In the foreground corrected maps, for l=2-6, we detect l(l+1) C_l^{EE} / (2 pi) = 0.086 +-0.029 microkelvin^2. This is interpreted as the result of rescattering of the CMB by free electrons released during reionization and corresponds to an optical depth of tau = 0.10 +- 0.03. We see no evidence for B-modes, limiting them to l(l+1) C_l^{BB} / (2 pi) = -0.04 +- 0.03 microkelvin^2. We find that the limit from the polarization signals alone is r<2.2 (95% CL) corresponding to a limit on the cosmic density of gravitational waves of Omega_{GW}h^2 < 5 times 10^{-12}. From the full WMAP analysis, we find r<0.55 (95% CL) corresponding to a limit of Omega_{GW}h^2 < 10^{-12} (95% CL).

58 citations