scispace - formally typeset
Search or ask a question
Author

John H. Holland

Other affiliations: Santa Fe Institute
Bio: John H. Holland is an academic researcher from University of Michigan. The author has contributed to research in topics: Classifier (UML) & Complex adaptive system. The author has an hindex of 50, co-authored 92 publications receiving 69949 citations. Previous affiliations of John H. Holland include Santa Fe Institute.


Papers
More filters
Book
01 Jan 1975
TL;DR: Names of founding work in the area of Adaptation and modiication, which aims to mimic biological optimization, and some (Non-GA) branches of AI.
Abstract: Name of founding work in the area. Adaptation is key to survival and evolution. Evolution implicitly optimizes organisims. AI wants to mimic biological optimization { Survival of the ttest { Exploration and exploitation { Niche nding { Robust across changing environments (Mammals v. Dinos) { Self-regulation,-repair and-reproduction 2 Artiicial Inteligence Some deenitions { "Making computers do what they do in the movies" { "Making computers do what humans (currently) do best" { "Giving computers common sense; letting them make simple deci-sions" (do as I want, not what I say) { "Anything too new to be pidgeonholed" Adaptation and modiication is root of intelligence Some (Non-GA) branches of AI: { Expert Systems (Rule based deduction)

32,573 citations

BookDOI
01 May 1992
TL;DR: Initially applying his concepts to simply defined artificial systems with limited numbers of parameters, Holland goes on to explore their use in the study of a wide range of complex, naturally occuring processes, concentrating on systems having multiple factors that interact in nonlinear ways.
Abstract: From the Publisher: Genetic algorithms are playing an increasingly important role in studies of complex adaptive systems, ranging from adaptive agents in economic theory to the use of machine learning techniques in the design of complex devices such as aircraft turbines and integrated circuits. Adaptation in Natural and Artificial Systems is the book that initiated this field of study, presenting the theoretical foundations and exploring applications. In its most familiar form, adaptation is a biological process, whereby organisms evolve by rearranging genetic material to survive in environments confronting them. In this now classic work, Holland presents a mathematical model that allows for the nonlinearity of such complex interactions. He demonstrates the model's universality by applying it to economics, physiological psychology, game theory, and artificial intelligence and then outlines the way in which this approach modifies the traditional views of mathematical genetics. Initially applying his concepts to simply defined artificial systems with limited numbers of parameters, Holland goes on to explore their use in the study of a wide range of complex, naturally occuring processes, concentrating on systems having multiple factors that interact in nonlinear ways. Along the way he accounts for major effects of coadaptation and coevolution: the emergence of building blocks, or schemata, that are recombined and passed on to succeeding generations to provide, innovations and improvements. John H. Holland is Professor of Psychology and Professor of Electrical Engineering and Computer Science at the University of Michigan. He is also Maxwell Professor at the Santa Fe Institute and isDirector of the University of Michigan/Santa Fe Institute Advanced Research Program.

12,584 citations

Journal ArticleDOI
TL;DR: There is no a priori reason why machine learning must borrow from nature, but many machine learning systems now borrow heavily from current thinking in cognitive science, and rekindled interest in neural networks and connectionism is evidence of serious mechanistic and philosophical currents running through the field.
Abstract: There is no a priori reason why machine learning must borrow from nature. A field could exist, complete with well-defined algorithms, data structures, and theories of learning, without once referring to organisms, cognitive or genetic structures, and psychological or evolutionary theories. Yet at the end of the day, with the position papers written, the computers plugged in, and the programs debugged, a learning edifice devoid of natural metaphor would lack something. It would ignore the fact that all these creations have become possible only after three billion years of evolution on this planet. It would miss the point that the very ideas of adaptation and learning are concepts invented by the most recent representatives of the species Homo sapiens from the careful observation of themselves and life around them. It would miss the point that natural examples of learning and adaptation are treasure troves of robust procedures and structures. Fortunately, the field of machine learning does rely upon nature's bounty for both inspiration and mechanism. Many machine learning systems now borrow heavily from current thinking in cognitive science, and rekindled interest in neural networks and connectionism is evidence of serious mechanistic and philosophical currents running through the field. Another area where natural example has been tapped is in work on genetic algorithms (GAs) and genetics-based machine learning. Rooted in the early cybernetics movement (Holland, 1962), progress has been made in both theory (Holland, 1975; Holland, Holyoak, Nisbett, & Thagard, 1986) and application (Goldberg, 1989; Grefenstette, 1985, 1987) to the point where genetics-based systems are finding their way into everyday commercial use (Davis & Coombs, 1987; Fourman, 1985).

3,019 citations

Book
01 Jan 1995

2,588 citations

Book
02 Mar 1989
TL;DR: Induction is the first major effort to bring the ideas of several disciplines to bear on a subject that has been a topic of investigation since the time of Socrates and is included in the Computational Models of Cognition and Perception Series.
Abstract: Two psychologists, a computer scientist, and a philosopher have collaborated to present a framework for understanding processes of inductive reasoning and learning in organisms and machines. Theirs is the first major effort to bring the ideas of several disciplines to bear on a subject that has been a topic of investigation since the time of Socrates. The result is an integrated account that treats problem solving and induction in terms of rule-based mental models. Induction is included in the Computational Models of Cognition and Perception Series. A Bradford Book.

2,021 citations


Cited by
More filters
Proceedings ArticleDOI
06 Aug 2002
TL;DR: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced, and the evolution of several paradigms is outlined, and an implementation of one of the paradigm is discussed.
Abstract: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications, including nonlinear function optimization and neural network training, are proposed. The relationships between particle swarm optimization and both artificial life and genetic algorithms are described.

35,104 citations

Journal ArticleDOI
TL;DR: AutoDock Vina achieves an approximately two orders of magnitude speed‐up compared with the molecular docking software previously developed in the lab, while also significantly improving the accuracy of the binding mode predictions, judging by tests on the training set used in AutoDock 4 development.
Abstract: AutoDock Vina, a new program for molecular docking and virtual screening, is presented. AutoDock Vina achieves an approximately two orders of magnitude speed-up compared with the molecular docking software previously developed in our lab (AutoDock 4), while also significantly improving the accuracy of the binding mode predictions, judging by our tests on the training set used in AutoDock 4 development. Further speed-up is achieved from parallelism, by using multithreading on multicore machines. AutoDock Vina automatically calculates the grid maps and clusters the results in a way transparent to the user.

20,059 citations

Journal ArticleDOI
TL;DR: A snapshot of particle swarming from the authors’ perspective, including variations in the algorithm, current and ongoing research, applications and open problems, is included.
Abstract: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed Benchmark testing of the paradigm is described, and applications, including nonlinear function optimization and neural network training, are proposed The relationships between particle swarm optimization and both artificial life and genetic algorithms are described

18,439 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the relation between the exploration of new possibilities and the exploitation of old certainties in organizational learning and examine some complications in allocating resources between the two, particularly those introduced by the distribution of costs and benefits across time and space.
Abstract: This paper considers the relation between the exploration of new possibilities and the exploitation of old certainties in organizational learning. It examines some complications in allocating resources between the two, particularly those introduced by the distribution of costs and benefits across time and space, and the effects of ecological interaction. Two general situations involving the development and use of knowledge in organizations are modeled. The first is the case of mutual learning between members of an organization and an organizational code. The second is the case of learning and competitive advantage in competition for primacy. The paper develops an argument that adaptive processes, by refining exploitation more rapidly than exploration, are likely to become effective in the short run but self-destructive in the long run. The possibility that certain common organizational practices ameliorate that tendency is assessed.

16,377 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations