scispace - formally typeset
Search or ask a question

Showing papers by "Joyce E. Longcore published in 2002"


Journal ArticleDOI
TL;DR: Collection of frogs from populations experiencing mortality events at eight sites were found to have characteristic lesions of chytrid fungus infection (Batrachochytrium dendrobatidis), which included diffuse epidermal hyperplasia, hyperkeratosis, and colonization of the keratinized layers of the epidermis by sporangia of the chyTrid.
Abstract: Twenty seven adult/sub-adult lowland leopard frogs (Rana yavapaiensis), two larval lowland leopard frogs, two adult Chirichahua leopard frogs (Rana chiricahuensis), and two adult canyon tree frogs (Hyla arenicolor) collected from populations experiencing mortality events at eight sites were found to have characteristic lesions of chytrid fungus infection (Batrachochytrium dendrobatidis). The mortalities occurred during December 1992 and between October and February in 1997–98 and December and February in 1998–99. Gross lesions varied from none to diffuse reddening of the skin of the abdomen, pelvic area, and legs. Microscopic lesions were characteristic of those previously reported for the disease and included diffuse epidermal hyperplasia, hyperkeratosis, and colonization of the keratinized layers of the epidermis by sporangia of the chytrid. Bacterial cultures did not yield a primary pathogenic agent. Virus isolation from frog tissues was negative. Batrachochytrium dendrobatidiswas isolated from the ski...

196 citations


Journal ArticleDOI
TL;DR: It is shown that 10 peptides representing eight families of peptides derived from North American ranid frogs can effectively inhibit growth of this chytrid fungus, suggesting that the ranidfrogs have, within their repertoire of antimicrobial substances, a number of skin peptides that should be a deterrent to chyTrid infection.
Abstract: Accumulating evidence suggests that a chytrid fungus, Batrachochytrium dendrobatidis, is responsible for recent declines in amphibian populations in Australia, Central America, Europe, and North America. Because the chytrid infects the keratinized epithelium of the skin, we investigated the possible role of antimicrobial peptides produced in the skin as inhibitors of infection and growth. We show here that 10 peptides representing eight families of peptides derived from North American ranid frogs can effectively inhibit growth of this chytrid. The peptides are members of the ranatuerin-1, ranatuerin-2, esculentin-1, esculentin-2, brevinin-2, temporin, palustrin-3, and ranalexin families. All the tested peptides inhibit growth of mature fungal cells at concentrations above 25 microM, and some of them inhibit at concentrations as low as 2 microM. A comparison of the sensitivity of infectious zoospores with that of mature cells showed that the zoospores are inhibited at significantly lower concentrations of peptides. To determine whether cold temperature interferes with the inhibitory effects of these peptides, we tested their effectiveness at both 22 and 10 degrees C. Although the peptides inhibit at both temperatures, they appear to be more effective against zoospores at the lower temperature. These results suggest that the ranid frogs have, within their repertoire of antimicrobial substances, a number of skin peptides that should be a deterrent to chytrid infection. This may provide some natural resistance to infection, but if environmental factors inhibit the synthesis and release of the skin peptides, the pathogen could gain the advantage.

183 citations


Journal ArticleDOI
TL;DR: First direct evidence that antimicrobial peptides in the skin can operate as a first line of defense against the organisms associated with global amphibian declines is shown, suggesting that this innate defense mechanism may play a role in preventing or limiting infection by these organisms.
Abstract: Global declines of amphibian populations are a source of great concern. Several pathogens that can infect the skin have been implicated in the declines. The pathogen most frequently associated with recent die-offs is a chytrid fungus, Batrachochytrium dendrobatidis. A second fungus, Basidiobolus ranarum, was isolated from declining populations of Wyoming toads. A third pathogen, Aeromonas hydrophila, is an opportunistic bacterium found in healthy frogs, but capable of inducing disease. Among the immune defense mechanisms used by amphibians is the production of antimicrobial peptides in granular glands in the skin. These packets of natural antibiotics can be emptied onto the skin when the amphibian is injured. To determine whether antimicrobial skin peptides defend against these amphibian pathogens, six peptides (magainin I, magainin II, PGLa, CPF, ranalexin, and dermaseptin), from three species, and representing three structurally different families of peptides, were tested in growth inhibition assays. We show here that the peptides can kill or inhibit growth of both fungi but not Aeromonas. Although each peptide varied in its effectiveness, at least one from each species was effective against both fungi at a concentration of about 10-20 microM. This is the first direct evidence that antimicrobial peptides in the skin can operate as a first line of defense against the organisms associated with global amphibian declines. It suggests that this innate defense mechanism may play a role in preventing or limiting infection by these organisms.

175 citations


Journal ArticleDOI
TL;DR: Significant cross-reactivity occurred only with some fungi in the Chytridiomycota, and there are no members of this phylum besides B. dendrobatidis that infect frogs.
Abstract: Polyclonal antibodies were produced for diagnosing chytridiomycosis in amphibians. Two sheep and 4 rabbits were inoculated with homogenized whole culture of Batrachochytrium dendrobatidis in Freund's complete adjuvant or triple adjuvant. Antisera from all animals reacted strongly with all stages of B. dendrobatidis and stained the walls, cytoplasm, rhizoids and zoospores in an indirect immunoperoxidase test. Significant cross-reactivity occurred only with some fungi in the Chytridiomycota, and there are no members of this phylum besides B. dendrobatidis that infect frogs. The immunoperoxidase stain is a useful screening test when combined with recognition of the morphology and infection site of B. dendrobatidis.

60 citations