scispace - formally typeset
Search or ask a question

Showing papers by "Kenneth Sassen published in 1992"


Journal ArticleDOI
TL;DR: In this paper, a polarization (0.694 microns wavelength) lidar dataset for subvisual and thin (bluish-colored) clouds is drawn from project FIRE (First ISCCP Regional Experiment) extended time observations.
Abstract: A polarization (0.694 microns wavelength) lidar dataset for subvisual and thin (bluish-colored) cirrus clouds is drawn from project FIRE (First ISCCP Regional Experiment) extended time observations. The clouds are characterized by their day-night visual appearance; base, top, and optical midcloud heights and temperatures; measured physical and estimated optical cloud thicknesses; integrated linear depolarization ratios; and derived k/2 eta ratios. A subset of the data supporting 30 NOAA polar-orbiting satellite overpasses is given in tabular form to provide investigators with the means to test cloud retrieval algorithms and establish the limits of cirrus detectability from satellite measurements under various conditions. Climatologically, subvisual-thin cirrus appear to be higher, colder, and more strongly depolarizing than previously reported multilatitude cirrus, although similar k/2 eta that decrease with height and temperature are found.

330 citations


Journal ArticleDOI
24 Jul 1992-Science
TL;DR: Supercooled droplets in cirrus uncinus cell heads between -40� and -50�C are identified from Project FIRE polarization lidar measurements, and an unrecognized volcano-cirrus cloud climate feedback mechanism is implied by these findings.
Abstract: Supercooled droplets in cirrus uncinus cell heads between -40 and -50 C are identified from the First International Satellite Cloud Climatology Project Regional Experiment polarization lidar measurements. Although short-lived, complexes of these small liquid cells seem to have contributed importantly to the formation of the cirrus. Freezing-point depression effects in solution droplets, apparently resulting from relatively large cloud condensation nuclei of volcanic origin, can be used to explain this rare phenomenon. An unrecognized volcano-cirrus cloud climate feedback mechanism is implied by these findings.

90 citations


Journal ArticleDOI
TL;DR: In this paper, an improved understanding of the radiative properties of cirrus clouds is presented, which is linked to the inhomogeneity of the cloud field, and only studies on more homogeneous cirrus cloud cases promises a possibility to improve current cirrus parameterizations.
Abstract: The radiative properties of cirrus clouds present one of the unresolved problems in weather and climate research. Uncertainties in ice particle amount and size and, also, the general inability to model the single scattering properties of their usually complex particle shapes, prevent accurate model predictions. For an improved understanding of cirrus radiative effects, field experiments, as those of the Cirrus IFO of FIRE, are necessary. Simultaneous measurements of radiative fluxes and cirrus microphysics at multiple cirrus cloud altitudes allows the pitting of calculated versus measured vertical flux profiles; with the potential to judge current cirrus cloud modeling. Most of the problems in this study are linked to the inhomogeneity of the cloud field. Thus, only studies on more homogeneous cirrus cloud cases promises a possibility to improve current cirrus parameterizations. Still, the current inability to detect small ice particles will remain as a considerable handicap.

50 citations


Journal ArticleDOI
TL;DR: Water cloud results reveal the expected increases in linear depolarization ratios (delta) with increasing lidar field of view and distance to cloud but also show thatdepolarization is a function of cloud liquid water content, which depends primarily on temperature.
Abstract: The dependence of polarization lidar returns on basic microphysical and thermodynamic variables is assessed by using a cloud model to simulate the growth of water and mixed (water and ice) phase clouds. Cloud contents that evolve with height in updrafts are converted, by using Mie theory, into cloud droplet single and double backscattering and attenuation coefficients. The lidar equation includes forward multiple scattering attenuation corrections based on diffraction theory for droplets and ice crystals, whose relative scattering contributions are treated empirically. Lidar depolarization is computed from droplet and crystal single scattering and an analytical treatment of droplet double scattering. Water cloud results reveal the expected increases in linear depolarization ratios (delta) with increasing lidar field of view and distance to cloud but also show that depolarization is a function of cloud liquid water content, which depends primarily on temperature. Ice crystals modulate mixed phase cloud liquid water contents through water vapor competition effects, thereby affecting multiple scattering delta values as functions of updraft velocity, temperature, and crystal size and concentration. Although the minimum delta at cloud base increases with increasing ice content, the peak measurable delta in the cloud decreases. Comparison with field data demonstrate that this modeling approach is a valuable supplement to cloud measurements.

34 citations