scispace - formally typeset
Search or ask a question

Showing papers by "Kenneth Sassen published in 2008"


Journal ArticleDOI
TL;DR: In this article, a combined CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data cirrus cloud algorithm was used to identify those clouds that would likely be classified as cirrus by a surface weather observer.
Abstract: [1] The cirrus clouds of the upper troposphere are globally widespread and are important regulators of the radiative balance, and hence climate, of the Earth-atmosphere system. Despite their wide distribution, however, cirrus are difficult to study from satellite radiance measurements or from scattered ground observing sites because they can occur as part of multilayered cloud systems and are characteristically optically thin. The need to better characterize the global distribution of cirrus clouds was therefore a major justification for the formation flying of the CloudSat and CALIPSO satellites, which support a cloud radar and polarization lidar, respectively. Measurements by these active remote sensors, when analyzed by appropriate algorithms, have the ability to identify and accurately measure the locations and heights of this category of clouds. The combined CloudSat/ Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data cirrus cloud algorithm used in this study is aimed at identifying those clouds that would likely be classified as cirrus by a surface weather observer: it is based on previous experience with multiple remote sensor approaches and knowledge gleaned from extensive surface lidar and radar observations of visually identified cirrus clouds with a minimum of a priori assumptions. We report on the global and seasonal frequencies of cirrus clouds, and on their heights and thicknesses obtained over the initial 1 year of data collected. We find a global average frequency of cirrus cloud occurrence of 16.7%. These new results are compared with other cirrus cloud climatologies and are interpreted in terms of local cirrus cloud formation mechanisms and the responsible global weather phenomena.

415 citations


Journal ArticleDOI
TL;DR: Using the vertical profiles of clouds and precipitation, an algorithm has been developed to determine the type of clouds present as mentioned in this paper, which is needed to apply other algorithms to derive quantitative cloud content and radiative data.
Abstract: [1] CloudSat supports a 94 GHz cloud profiling radar as part of the innovative A-train formation of satellites studying the Earths clouds and atmosphere. Using the vertical profiles of clouds and precipitation, an algorithm has been developed to determine the type of clouds present. Because cloud type corresponds to specific cloud physical properties, this step is needed to apply other algorithms to derive quantitative cloud content and radiative data. This cloud type algorithm is applied to the initial 1-year of radar data to obtain the global distribution of various cloud types over the land and ocean. These initial results appear consistent with previous global cloud type distributions, but with some differences that provide insights into the limitations of CloudSat measurements.

256 citations


Journal ArticleDOI
TL;DR: In this article, the authors show that smoke-induced ice nucleation occurs at moderate supercooled temperatures either through the effects of raised soil/dust particles embedded in the smoke droplets, coated soot aerosol or through the nucleation via certain organic solutions.
Abstract: Polarization lidar observations from the interior of Alaska have revealed unusual supercooled altocumulus cloud conditions in the presence of boreal forest fire smoke from local and regional fires. At temperatures of about −15 °C, the lidar data show ice nucleation prior to liquid cloud formation (i.e. below water saturation), as well as the occasional glaciation of the liquid layer. Thus the smoke aerosol appears to act as ice nuclei that become activated in updrafts before the liquid cloud forms, as the concentrated aqueous organic solutions are diluted sufficiently to allow them to freeze heterogeneously. This haze particle freezing process is similar to the production of cirrus ice crystals homogeneously at much colder temperatures. To test this hypothesis, cloud microphysical model simulations constrained by the measurements were performed. They indicate that this heterogeneous ice nucleation scenario can be supported by the cloud model. Although ice formation in this manner may generally act in the atmosphere, the boreal smoke particles produce an unusually dramatic effect in the lidar data. We conclude that smoke-induced ice nucleation occurs at moderate supercooled temperatures either through the effects of raised soil/dust particles embedded in the smoke droplets, coated soot aerosol or through the nucleation via certain organic solutions.

60 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that tree pollen can generate strong laser depolarization in the backscatter from the lower atmosphere, which is a general attribute of pollen and other suspended biogenic debris, which has implications for benefiting human health.
Abstract: [1] Polarization (0.694 μm) lidar measurements show that tree pollen can generate strong laser depolarization in the backscatter from the lower atmosphere. Examples are given illustrating that linear depolarization ratios up to 0.3 are measured in plumes of paper birch pollen at the onset of boreal forest green-out. These pollen are ∼25 μm in diameter and near-spherical in shape, but with lobes protruding from a surface membrane, which appears to produce the depolarization. Similar lidar findings are frequently observed during the summer at Fairbanks, Alaska, indicating that various types of seasonal pollen releases may be identified by polarization lidar. This scattering behavior is likely a general attribute of pollen and other suspended biogenic debris, which has implications for benefiting human health. This source of laser depolarization should not be confused with the presence of airborne dust or certain pollution particles, but is a natural background aerosol component caused by plant reproduction, as should be recognized in current global polarization lidar aerosol research using the CALIPSO satellite.

53 citations


Journal ArticleDOI
TL;DR: In this article, a threshold-based detection algorithm for cloud and aerosol layer heights in elevated micropulse lidar data (0.523 μm) is described, which is based on the signal uncertainties of the level 1.0 Micropulse Lidar Network (MPLNET) data product.
Abstract: A threshold-based detection algorithm for cloud and aerosol layer heights in elevated micropulse lidar data (0.523 μm) is described. Thresholds for differentiating cloud and aerosol signals from that of the molecular atmosphere are based on the signal uncertainties of the level 1.0 Micropulse Lidar Network (MPLNET) data product. To illustrate the algorithm, data from 1 to 10 June 2003 collected by an MPLNET instrument at the South Pole are discussed for polar stratospheric cloud-height retrievals. Additional tests are run for algorithm sensitivity relative to variable solar background scenes. The algorithm is run at multiple temporal resolutions. Results derived at a base resolution are used to screen attenuation-limited profiles from longer time averages to improve performance. A signal normalization step using a theoretical molecular scattering profile limits the application of the technique in the lower atmosphere for a ground-based instrument. This would not be the case for some nadir-viewing...

49 citations


Journal ArticleDOI
TL;DR: In this paper, a 5-year data subset is presented to describe macrophysical, optical, and thermodynamic properties of polar stratospheric clouds (PSC) in austral winters 2000 and 2003-2006.
Abstract: [1] An eye-safe micropulse lidar (MPL; 0.523 μm) has operated at the Scott-Amundsen South Pole Station, Antarctica, since December 1999 to collect continuous long-term measurements of polar clouds. A 5-year data subset is presented here to describe macrophysical, optical, and thermodynamic properties of polar stratospheric clouds (PSC) in austral winters 2000 and 2003–2006. PSC cloud occurrence is examined relative to seasonal temperature and theoretical chemical structure. A linear relationship is established with high correlation between total integrated PSC scattering and ozone loss for 2000 and 2003–2005 when springtime overturning of the air mass occurred nominally. In 2006, ozone-depleted air persisted over the South Pole through the end of December. In this case, overturning of the air mass was limited temporally by vortex-related mechanisms, and any correlation with PSC occurrence was eliminated. PSC formed near and above 18.0 km above mean sea level (MSL) in late May and early June likely influence clouds formed at lower heights later in the season from sedimentation, evaporation/sublimation, and repartitioning of nitrogen and water vapor in the air mass bounded by the dynamic polar vortex. Conceptual profiles for seasonal PSC occurrence and thermal structure are described. PSC are common to near and above 20.0 km MSL through June. After this, they are most frequent near 15.0 km MSL through August.

21 citations


Journal ArticleDOI
TL;DR: In this article, a case study of a mesoscale uncinus complex with a two-layer structure observed by a high-resolution lidar is presented using the method based on wavelet transform.
Abstract: Although cirrus cloud structures play an important role in dynamics issues, cloud radiative calculations, and cloud parameter retrievals from satellite measurements, fully understanding cirrus cloud structures still remains a challenge. A case study of a cirrus containing mesoscale uncinus complexes (MUC) with a two-layer structure observed by a high-resolution lidar is presented using the method based on wavelet transform. The results indicate that dynamical processes play a leading role in determining cloud multiscale structures. The uncinus cells with a length scale on the order of ∼1 km, embedded in both the top and lower layers, have similar spectral features and are probably produced by a similar mechanism—thermal perturbation generated by heating and cooling effects associated with phase changes of water (i.e., adiabatic heating) and radiative processes. However, the mesoscale cloud patches are probably involved in different dynamics processes, suggesting that understanding of the interact...

18 citations


Journal ArticleDOI
TL;DR: In this article, the dispersion of a volcanic ash cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006 was examined, using synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites.
Abstract: On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20-year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. UAF aerosol samplers revealed the presence of volcanic aerosols at the surface at sitesmore » where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano and a sulfur-dioxide cloud further from the volcano consistent with the Puff predictions. Lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be undetectable by any other means but are still a significant hazard. Validation is the key to assessing the accuracy of any future predictions. The study highlights the use of multiple and complementary observations used in detecting the trajectory ash cloud, both at the surface and aloft within the atmosphere.« less

14 citations


Book ChapterDOI
01 Jan 2008
TL;DR: In this paper, the capability of polarization lidar systems to sense the exact shape of particles makes it a powerful tool to remotely identify many types of aerosols, particularly important in the study of how aerosols may affect the properties of clouds.
Abstract: A variety of types of aerosol particles, both natural and human-made, are commonly suspended in the atmosphere. Different aerosol types have characteristic shapes, but basically fall into two categories: spherical and irregular. Haze and forest fi re smoke particles are examples of the former, and desert dust and biogenic debris (e.g., pollen) of the latter. It is shown here that the capability of polarization lidar systems to sense the exact shape of particles makes it a powerful tool to remotely identify many types of aerosols. This is particularly important in the study of how aerosols may affect the properties of clouds.

13 citations


Journal ArticleDOI
TL;DR: In this paper, the concept design and preliminary applications of a new Eye Safe Polarization Diversity Lidar (ESPDL) instrument are described, which operates with polarization diversity in the laser emission and polarization discrimination in the receiver at 1574 nm for tropospheric aerosol studies in the Arctic atmosphere.
Abstract: The concept design and preliminary applications of a new Eye Safe Polarization Diversity Lidar (ESPDL) instrument are described. The lidar operates with polarization diversity in the laser emission and polarization discrimination in the receiver at 1574 nm for tropospheric aerosol studies in the Arctic atmosphere. This instrument was originally designed to operate in the eye-safe wavelength range with a one-channel receiver and 20 dB linear polarization accuracy in the laser emission, and assembled in a compact optical bench. The instrument was upgraded for polarization diversity laser emission, i.e polarization selectivity better than 30 dB, and for linear polarization reception discrimination, i.e. polarization discrimination better than 50 dB. Geophysical lidar applications under the scope of this instrument with an overall instrumental polarimetric accuracy better than 0.1% focus on the identification of very dilute suspended aerosols in the troposphere, ice in-cloud initiation and aerosol/water interfaces, complex aerosols, sub-visible high altitude clouds and environmental issues and dynamic processes in the Arctic such as ice fog, forest fire, and a multilayered stably stratified Arctic boundary layer. In this article we describe the instrument design concept and the electronic synchronization necessary to achieve the maximum instrumental polarization accuracy. We report a preliminary case study of differential polarization analysis.

Journal ArticleDOI
TL;DR: A modeling program is described to explain the diversity of rainbow phenomena one can see visually in the gallery and shows a rich relationship between the locally produced rainbow phenomena and the chamber equipment geometry and viewing position.
Abstract: The rainbow has had an important role in religion, art, and science. Recently, artists have attempted to create indoor rainbow displays as interactive exhibitions of art, but based, nonetheless, on the principles of the scattering behavior of raindrops and the experience of experiment. Motivated by recently viewing the Beauty, 1993, installation at the San Francisco Museum of Modern Art (SFMOMA), we describe here a modeling program to explain the diversity of rainbow phenomena one can see visually in the gallery. The most significant impression gleaned in the museum is the acute spatial dependence of rainbow form on the viewing position in the presence of a local divergent light source (i.e., a floodlamp), in stark contrast to the unchangeable natural rainbow produced by an unimaginably distant Sun. This represents a case of the local (divergent) versus solar (parallel) light ray source distinction in atmospheric optical displays, which is one of a handful of anthropogenic versus natural situations responsible for optics displays that have been so far described. Through geometrical optics and Airy's theory simulations we show a rich relationship between the locally produced rainbow phenomena and the chamber equipment geometry and viewing position.