scispace - formally typeset
Search or ask a question

Showing papers by "Kevin Smith published in 2010"


Book ChapterDOI
20 Sep 2010
TL;DR: This work proposes a fully automated approach that handles EM imagery of neural tissue challenges by using sophisticated cues that capture global shape and texture information, and by learning the specific appearance of object boundaries.
Abstract: While there has been substantial progress in segmenting natural images, state-of-the-art methods that perform well in such tasks unfortunately tend to underperform when confronted with the different challenges posed by electron microscope (EM) data. For example, in EM imagery of neural tissue, numerous cells and subcellular structures appear within a single image, they exhibit irregular shapes that cannot be easily modeled by standard techniques, and confusing textures clutter the background. We propose a fully automated approach that handles these challenges by using sophisticated cues that capture global shape and texture information, and by learning the specific appearance of object boundaries. We demonstrate that our approach significantly outperforms state-of-the-art techniques and closely matches the performance of human annotators.

103 citations


01 Jan 2010
TL;DR: This work proposes an automated graph partitioning scheme that reduces the computational complexity by operating on supervoxels instead of voxels, incorporates global shape features capable of describing the 3D shape of the target objects, and learns to recognize the distinctive appearance of true boundaries.
Abstract: Immense amounts of high resolution data are now routinely produced thanks to recent advances in EM imaging. While a strong demand for automated analysis now exists, it is stifled by the lack of robust automatic 3D segmentation techniques. State-of-the-art Computer Vision algorithms designed to operate on natural 2D images tend to perform poorly when applied to EM image stacks for a number of reasons. The sheer size of a typical EM image stack renders many segmentation schemes intractable. Most approaches rely on local statistics that easily become confused when confronted with the noise and textures found within EM image stacks. The assumption that strong image gradients always correspond to object boundaries is violated by cluttered membranes belonging to numerous objects. In this work, we propose an automated graph partitioning scheme that addresses these issues. It reduces the computational complexity by operating on supervoxels instead of voxels, incorporates global shape features capable of describing the 3D shape of the target objects, and learns to recognize the distinctive appearance of true boundaries. Our experiments demonstrate that, when applied to segment mitochondria from neural tissue, our approach closely matches the performance of human annotators and outperforms a state-of-the-art 3D segmentation technique.

12 citations