scispace - formally typeset
Search or ask a question

Showing papers by "Klaus-Robert Müller published in 1997"


Book ChapterDOI
08 Oct 1997
TL;DR: A new method for performing a nonlinear form of Principal Component Analysis by the use of integral operator kernel functions is proposed and experimental results on polynomial feature extraction for pattern recognition are presented.
Abstract: A new method for performing a nonlinear form of Principal Component Analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible d-pixel products in images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.

2,223 citations


Book ChapterDOI
08 Oct 1997
TL;DR: Two different cost functions for Support Vectors are made use: training with an e insensitive loss and Huber's robust loss function and how to choose the regularization parameters in these models are discussed.
Abstract: Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%.

988 citations


Journal ArticleDOI
TL;DR: A statistical theory for overtraining is proposed and it is shown that the asymptotic gain in the generalization error is small if the authors perform early stopping, even if they have access to the optimal stopping time.
Abstract: A statistical theory for overtraining is proposed. The analysis treats general realizable stochastic neural networks, trained with Kullback-Leibler divergence in the asymptotic case of a large number of training examples. It is shown that the asymptotic gain in the generalization error is small if we perform early stopping, even if we have access to the optimal stopping time. Based on the cross-validation stopping we consider the ratio the examples should be divided into training and cross-validation sets in order to obtain the optimum performance. Although cross-validated early stopping is useless in the asymptotic region, it surely decreases the generalization error in the nonasymptotic region. Our large scale simulations done on a CM5 are in good agreement with our analytical findings.

350 citations


Proceedings Article
01 Dec 1997
TL;DR: It is possible to detect and to model both a switching of the dynamics and a less abrupt, time consuming drift from one mode to another in nonstationary time series with multiple operating modes.
Abstract: We present a method for the analysis of nonstationary time series with multiple operating modes. In particular, it is possible to detect and to model both a switching of the dynamics and a less abrupt, time consuming drift from one mode to another. This is achieved in two steps. First, an unsupervised training method provides prediction experts for the inherent dynamical modes. Then, the trained experts are used in a hidden Markov model that allows to model drifts. An application to physiological wake/sleep data demonstrates that analysis and modeling of real-world time series can be improved when the drift paradigm is taken into account.

14 citations


Proceedings ArticleDOI
24 Sep 1997
TL;DR: An application to physiological wake/sleep data demonstrates that analysis and modeling of real-world time series can be improved when the drift paradigm is taken into account and hopes to gain more insight into the physiological processes that are involved in the transition from wake to sleep.
Abstract: A method for the analysis of nonstationary time series with multiple operating modes is presented. In particular, it is possible to detect and to model a switching of the dynamics and also a less abrupt, time consuming drift from one mode to another. This is achieved by an unsupervised algorithm that segments the data according to inherent modes, and a subsequent search through the space of possible drifts. An application to physiological wake/sleep data demonstrates that analysis and modeling of real-world time series can be improved when the drift paradigm is taken into account. In the case of wake/sleep data, we hope to gain more insight into the physiological processes that are involved in the transition from wake to sleep.

14 citations


Book ChapterDOI
08 Oct 1997
TL;DR: It is possible to detect and to model a switching of the dynamics and also a less abrupt, time consuming drift from one mode to another, by an unsupervised algorithm that segments the data according to inherent modes, and a subsequent search through the space of possible drifts.
Abstract: An analysis of physiological wake/sleep data is presented. We apply a recent method for the analysis of nonstationary time series with multiple operating modes. In particular, it is possible to detect and to model a switching of the dynamics and also a less abrupt, time consuming drift from one mode to another. This is achieved by an unsupervised algorithm that segments the data according to inherent modes, and a subsequent search through the space of possible drifts. The application to wake/sleep data demonstrates that analysis and modeling of real-world time series can be improved when the drift paradigm is taken into account. In the case of wake/sleep data, we hope to gain more insight into the physiological processes that are involved in the transition from wake to sleep.

6 citations