scispace - formally typeset
Search or ask a question

Showing papers by "Kodiveri Muthukaliannan Gothandam published in 2021"


Journal ArticleDOI
TL;DR: A review of β-carotene nanodelivery systems can be found in this article, which provides information on the state-of-the-art for β-Carotene delivery.
Abstract: Nanotechnology has opened new opportunities for delivering bioactive agents. Their physiochemical characteristics, i.e., small size, high surface area, unique composition, biocompatibility and biodegradability, make these nanomaterials an attractive tool for β-carotene delivery. Delivering β-carotene through nanoparticles does not only improve its bioavailability/bioaccumulation in target tissues, but also lessens its sensitivity against environmental factors during processing. Regardless of these benefits, nanocarriers have some limitations, such as variations in sensory quality, modification of the food matrix, increasing costs, as well as limited consumer acceptance and regulatory challenges. This research area has rapidly evolved, with a plethora of innovative nanoengineered materials now being in use, including micelles, nano/microemulsions, liposomes, niosomes, solidlipid nanoparticles, nanostructured lipids and nanostructured carriers. These nanodelivery systems make conventional delivery systems appear archaic and promise better solubilization, protection during processing, improved shelf-life, higher bioavailability as well as controlled and targeted release. This review provides information on the state of knowledge on β-carotene nanodelivery systems adopted for developing functional foods, depicting their classifications, compositions, preparation methods, challenges, release and absorption of β-carotene in the gastrointestinal tract (GIT) and possible risks and future prospects.

13 citations


Journal ArticleDOI
TL;DR: In this paper, the role of 1-Aminocyclopropane-1-carboxylate (ACC) deaminase in enhancing the biomass and lipid content of Chlamydomonas under nitrogen deficit condition was investigated.

4 citations


Journal ArticleDOI
TL;DR: The genome of Paracoccus marcusii KGP, isolated from the marine sediment collected from the coast of the Bay of Bengal, was sequenced using Oxford Nanopore sequencing technology.
Abstract: The genome of Paracoccus marcusii KGP, isolated from the marine sediment collected from the coast of the Bay of Bengal, was sequenced using Oxford Nanopore sequencing technology. The assembled genome sequence consists of seven contigs and has a 4,085,678 bp circular chromosome with 1647 coding genes and a G+C content of 66.7%. Besides, the genome of P. marcusii KGP contains three copies of the rrn operon. The genes coding for the industrially relevant enzymes and secondary metabolites such as β-galactosidase, protease, amylase, β-glucosidase, ectoine, indigoidine, and carotenoid biosynthesis clusters were also identified in the genome. When the β-galactosidase extracted from P. marcusii KGP was mixed with a high concentration of lactose, galacto-oligosaccharides were produced, which revealed the transgalactosylation property of the enzyme. The genome sequence of P. marcusii KGP was found to have an average nucleotide identity value of 96.16 and a digital DNA–DNA hybridisation value of 73.90% with the genome sequence of P. marcusii CGMCC. Furthermore, by comparing the genome sequences of both strains, it was found that the size of the KGP genome was large, indicating the possibility of strain-specific genes in addition to core genes.

4 citations