scispace - formally typeset
Search or ask a question

Showing papers by "Kouji Inagaki published in 2017"


Journal ArticleDOI
TL;DR: In this article, core-level and valence photoelectron spectroscopies were used to study the electronic states and growth modes of the Zn-deposited Cu(111) surface at 300 K.

23 citations


Journal ArticleDOI
TL;DR: In this paper, the structural and electronic properties of naphthalene adsorbed on graphene were studied from first principles using the van der Waals density functional method, and it was shown that naphalene molecules are stabilized by forming a superstructure with the periodicity of $(2\sqrt{3}ifmmode\times\else\texttimes\fi{}2\square{3})$ and a tilted molecular adsorption geometry on graphene, in good agreement with the scanning tunneling microscopy (STM) experiments on highly oriented pyro
Abstract: The structural and electronic properties of naphthalene adsorbed on graphene are studied from first principles using the van der Waals density functional method. It is shown that naphthalene molecules are stabilized by forming a superstructure with the periodicity of $(2\sqrt{3}\ifmmode\times\else\texttimes\fi{}2\sqrt{3})$ and a tilted molecular adsorption geometry on graphene, in good agreement with the scanning tunneling microscopy (STM) experiments on highly oriented pyrolytic graphite. Our results predict that image potential states (IPSs) are induced by intermolecular interaction on the naphthalene overlayer, hybridizing with the IPSs derived from graphene. The resultant hybrid IPSs are characterized by anisotropic effective mass reflecting the molecular structure of naphthalene. By means of STM simulations, we reveal that one of the hybrid IPSs manifests itself as an oval protrusion distinguishable from naphthalene molecular orbitals, which identifies the origin of an experimental STM image previously attributed to the lowest unoccupied molecular orbital of naphthalene.

15 citations


Journal ArticleDOI
TL;DR: The ruthenium complex was designed with an elongated ligand conjugation length and exhibited a tremendously large change in the absorption intensity of the protonated and deprotonated forms, which therefore demonstrates its feasibility as an indicator molecule especially for absorbance measurements.
Abstract: An absorbance-based sensor employing ruthenium bipyridyl with a phenanthroline-fused benzoylthiourea moiety formulated as [Ru(II)(bpy)2(phen-nBT)](PF6)2 {bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, nBT = n-benzoylthiourea} has been synthesized and characterized by elemental analyses, mass spectrometry, and infrared, ultraviolet-visible, luminescence and nuclear magnetic resonance spectroscopy. The changes in the intensity of absorption and emission of the complex induced by functionalization of the benzoylthiourea ligands with amino and carbonyl in their protonated and deprotonated forms were studied experimentally. The absorption and emission properties of the complex exhibit a strong dependence on the pH (1–11) of the aqueous medium. This work highlights the pH-sensitivity augmentation of the absorption band by elongating the conjugation length in the structure of the ruthenium bipyridine complex. The principle of this work was to design the title compound to be capable of enhancing the differences in the absorption sensitivity responses towards pH between the protonated and deprotonated complexes in the absorption measurement. Along with significant and noticeable changes in the absorption spectra, subsequent theoretical investigations specifically on the electronic and absorbance properties of the title compound were carried out in this study. Protonation of the molecule significantly stabilized the lowest-unoccupied molecular orbital (LUMO), whereas the highest-occupied molecular orbital (HOMO) is greatly destabilized upon deprotonation. A time-dependent density functional theory (TDDFT) calculation in the linear-response (-LR) regime was performed to clarify the origin of the experimentally observed linear dependence of absorption intensity upon pH (1–11). The MLCT band exhibits hyperchromic shift at low pH as indicated by the large transition dipole moment and a wider distribution of the response charge of the molecule, which is induced by the stabilization of the electrostatic potential at the carbonyl moiety by protonation. This study provides the possibility of employing theoretical information to gain insight into the origin of the optical absorption obtained experimentally. The ruthenium complex was designed with an elongated ligand conjugation length and exhibited a tremendously large change in the absorption intensity of the protonated and deprotonated forms, which therefore demonstrates its feasibility as an indicator molecule especially for absorbance measurements.

6 citations


Journal ArticleDOI
TL;DR: D density functional theory (DFT) calculations were performed for ferrocene-terminated self-assembled monolayers with different electron-donating abilities, and it was revealed that the local electrostatic potentials practically determine the density of states derived from the highest occupied molecular orbital (HOMO) and its vicinities with respect to the electrode Fermi level.
Abstract: The electrochemical properties of chemically modified electrodes have long been a significant focus of research. Although the electronic states are directly related to the electrochemical properties, there have been only limited systematic efforts to reveal the electronic structures of adsorbed redox molecules with respect to the local environment of the redox center. In this study, density functional theory (DFT) calculations were performed for ferrocene-terminated self-assembled monolayers with different electron-donating abilities, which can be regarded as the simplest class of chemically modified electrodes. We revealed that the local electrostatic potentials, which are changed by the electron donating/withdrawing functional groups at the ferrocene moiety and the dipole field of coadsorbed inert molecules, practically determine the density of states derived from the highest occupied molecular orbital (HOMO) and its vicinities (HOMO−1 and HOMO−2) with respect to the electrode Fermi level. Therefore, to design new, sophisticated electrodes with chemical modification, one should consider not only the electronic properties of the constituent molecules, but also the local electrostatic potentials formed by these molecules and coadsorbed inert molecules.

5 citations