scispace - formally typeset
Search or ask a question

Showing papers by "L. Maraschi published in 2016"


Journal ArticleDOI
Max Ludwig Ahnen1, Stefano Ansoldi2, Stefano Ansoldi3, Louis Antonelli4  +166 moreInstitutions (27)
TL;DR: In this paper, a multi-wavelength spectral energy distribution of a gravitationally lensed blazar was constructed and used to model the source of a very high energy gamma-ray source.
Abstract: Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components that are spatially indistinguishable by gamma-ray instruments, but separated by a 10–12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma-ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data obtained by Fermi-LAT and MAGIC are used to set constraints on the extragalactic background light. Results. Very high energy gamma-ray emission was detected from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray source detected to date. The observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broadband emission can be modeled in the framework of a two-zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.

75 citations


Journal ArticleDOI
Max Ludwig Ahnen1, Stefano Ansoldi2, Stefano Ansoldi3, Louis Antonelli4  +157 moreInstitutions (23)
TL;DR: In this paper, a multi-wavelength spectral energy distribution of a gravitationally lensed blazar was derived from the MAGIC and Fermi-LAT observations of a very high energy gamma-ray source.
Abstract: Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components, spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data, obtained by Fermi-LAT and MAGIC, are used to set constraints on the extragalactic background light. Results. Very high energy gamma-ray emission was detected from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray sources detected to date. The observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broad band emission can be modeled in the framework of a two zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.

65 citations


Journal ArticleDOI
Max Ludwig Ahnen, Stefano Ansoldi, L. A. Antonelli, P. Antoranz, Ana Babić, B. Banerjee, P. Bangale, U. Barres de Almeida, Juan Abel Barrio, J. Becerra González, Wlodek Bednarek, Elisa Bernardini, B. Biasuzzi, A. Bil, Oscar Blanch, S. Bonnefoy, Giacomo Bonnoli, F. Borracci, Thomas Bretz, E. Carmona, A. Carosi, Arka Chatterjee, R. Clavero, P. Colin, E. Colombo, Jose Luis Contreras, Juan Cortina, Stefano Covino, P. Da Vela, Francesco Dazzi, A. De Angelis, B. De Lotto, E. de Oña Wilhelmi, C. Delgado Mendez, F. Di Pierro, D. Dominis Prester, Daniela Dorner, Michele Doro, Sabrina Einecke, D. Eisenacher Glawion, Dominik Elsaesser, Alba Fernández-Barral, D. Fidalgo, M. V. Fonseca, Ll. Font, K. Frantzen, Christian Fruck, D. Galindo, R. J. García López, M. Garczarczyk, D. Garrido Terrats, M. Gaug, P. Giammaria, Nikola Godinovic, A. González Muñoz, D. Guberman, Alexander Hahn, Y. Hanabata, M. Hayashida, J. Herrera, J. Hose, Dario Hrupec, G. Hughes, W. Idec, K. Kodani, Yusuke Konno, Hidetoshi Kubo, Junko Kushida, A. La Barbera, Damir Lelas, E. Lindfors, Saverio Lombardi, F. Longo, M. Lopez, R. López-Coto, Alicia López-Oramas, Eckart Lorenz, Pratik Majumdar, Martin Makariev, K. Mallot, G. Maneva, Marina Manganaro, Karl Mannheim, L. Maraschi, Benito Marcote, Mosè Mariotti, Miriam Lucio Martinez, Daniel Mazin, U. Menzel, J. M. Mira, R. Mirzoyan, Abelardo Moralejo, E. Moretti, D. Nakajima, Vitaly Neustroev, A. Niedzwiecki, M. Nievas Rosillo, K. Nilsson, K. Nishijima, Koji Noda, Reiko Orito, A.-K. Overkemping, S. Paiano, J. Palacio, Michele Palatiello, David Paneque, R. Paoletti, J. M. Paredes, X. Paredes-Fortuny, Massimo Persic, Juri Poutanen, P. G. Prada Moroni, E. Prini, Ivica Puljak, Wolfgang Rhode, Marc Ribó, J. Rico, J. Rodriguez Garcia, Tomoki Saito, Konstancja Satalecka, C. Schultz, T. Schweizer, S. N. Shore, A. Sillanpää, Julian Sitarek, I. Snidaric, Dorota Sobczyńska, A. Stamerra, T. Steinbring, Marcel Strzys, L. O. Takalo, H. Takami, Fabrizio Tavecchio, P. Temnikov, Tomislav Terzić, D. Tescaro, Masahiro Teshima, Julia Thaele, Diego F. Torres, T. Toyama, Aldo Treves, Vassil Verguilov, Ievgen Vovk, J. E. Ward, Martin Will, M. H. Wu, Roberta Zanin 
TL;DR: In this article, the imprint of the Extragalactic Background Light (EBL) in the VHE spectrum of the source was detected in order to constrain its intensity in the optical band.
Abstract: In February-March 2014, the MAGIC telescopes observed the high-frequency peaked BL Lac 1ES 1011+496 (z=0.212) in flaring state at very-high energy (VHE, E>100GeV). The flux reached a level more than 10 times higher than any previously recorded flaring state of the source. We present the description of the characteristics of the flare presenting the light curve and the spectral parameters of the night-wise spectra and the average spectrum of the whole period. From these data we aim at detecting the imprint of the Extragalactic Background Light (EBL) in the VHE spectrum of the source, in order to constrain its intensity in the optical band. For this we implement the method developed by the H.E.S.S. collaboration in which the intrinsic energy spectrum of the source is modeled with a simple function, and the EBL-induced optical depth is calculated using a template EBL model. The likelihood of the observed spectrum is then maximized, including a normalization factor for the EBL opacity among the free parameters. From the data collected differential energy spectra was produced for all nights of the observed period. Evaluating the changes in the fit parameters we conclude that the spectral shape for most of the nights were compatible, regardless of the flux level, which enabled us to produce an average spectrum from which the EBL imprint could be constrained. The likelihood ratio test shows that the model with an EBL density 1.07(-0.20,+0.24)_{stat+sys}, relative to the one in the tested EBL template (Dominguez et al.2011), is preferred at the 4.6 sigma level to the no-EBL hypothesis, with the assumption that the intrinsic source spectrum can be modeled as a log-parabola. This would translate into a constraint of the EBL density in the wavelength range [0.24 um,4.25 um], with a peak value at 1.4 um of F=12.27_{-2.29}^{+2.75} nW m^{-2} sr^{-1}, including systematics.

60 citations


Journal ArticleDOI
Max Ludwig Ahnen1, Stefano Ansoldi2, L. A. Antonelli3, P. Antoranz4  +150 moreInstitutions (26)
TL;DR: In this article, the EBL-induced optical depth was calculated using a template EBL model, with the assumption that the intrinsic source spectrum can be modeled as a log-parabola.
Abstract: Context. In February-March 2014, the MAGIC telescopes observed the high-frequency peaked BL Lac 1ES 1011+496 (z=0.212) in flaring state at very-high energy (VHE, E>100GeV). The flux reached a level more than 10 times higher than any previously recorded flaring state of the source. Aims. Description of the characteristics of the flare presenting the light curve and the spectral parameters of the night-wise spectra and the average spectrum of the whole period. From these data we aim at detecting the imprint of the Extragalactic Background Light (EBL) in the VHE spectrum of the source, in order to constrain its intensity in the optical band. Methods. We analyzed the gamma-ray data from the MAGIC telescopes using the standard MAGIC software for the production of the light curve and the spectra. For the constraining of the EBL we implement the method developed by the H.E.S.S. collaboration in which the intrinsic energy spectrum of the source is modeled with a simple function (< 4 parameters), and the EBL-induced optical depth is calculated using a template EBL model. The likelihood of the observed spectrum is then maximized, including a normalization factor for the EBL opacity among the free parameters. Results. The collected data allowed us to describe the flux changes night by night and also to produce di_erential energy spectra for all nights of the observed period. The estimated intrinsic spectra of all the nights could be fitted by power-law functions. Evaluating the changes in the fit parameters we conclude that the spectral shape for most of the nights were compatible, regardless of the flux level, which enabled us to produce an average spectrum from which the EBL imprint could be constrained. The likelihood ratio test shows that the model with an EBL density 1:07 (-0.20,+0.24)stat+sys, relative to the one in the tested EBL template (Dominguez et al. 2011), is preferred at the 4:6 σ level to the no-EBL hypothesis, with the assumption that the intrinsic source spectrum can be modeled as a log-parabola. This would translate into a constraint of the EBL density in the wavelength range [0.24 μm,4.25 μm], with a peak value at 1.4 μm of λF_ = 12:27^(+2:75)_ (-2:29) nW m^(-2) sr^(-1), including systematics.

58 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reported an updated measurement of the NGC 1275 spectrum, which is well described by a power law with a photon index of $3.6\pm 0.2.
Abstract: Clusters of galaxies are expected to be reservoirs of cosmic rays (CRs) that should produce diffuse gamma-ray emission due to their hadronic interactions with the intra-cluster medium. The nearby Perseus cool-core cluster, identified as the most promising target to search for such an emission, has been observed with the MAGIC telescopes at very-high energies (VHE, E>100 GeV) for a total of 253 hr from 2009 to 2014. The active nuclei of NGC 1275, the central dominant galaxy of the cluster, and IC 310, lying at about 0.6$^\circ$ from the centre, have been detected as point-like VHE gamma-ray emitters during the first phase of this campaign. We report an updated measurement of the NGC 1275 spectrum, which is well described by a power law with a photon index of $3.6\pm0.2_{stat}\pm0.2_{syst}$ between 90 GeV and 1.2 TeV. We do not detect any diffuse gamma-ray emission from the cluster and set stringent constraints on its CR population. In order to bracket the uncertainties over the CR spatial and spectral distributions, we adopt different spatial templates and power-law spectral indexes $\alpha$. For $\alpha=2.2$, the CR-to-thermal pressure within the cluster virial radius is constrained to be below 1-2%, except if CRs can propagate out of the cluster core, generating a flatter radial distribution and releasing the CR-to-thermal pressure constraint to <20%. Assuming that the observed radio mini-halo of Perseus is generated by secondary electrons from CR hadronic interactions, we can derive lower limits on the central magnetic field, $B_0$, that depend on the CR distribution. For $\alpha=2.2$, $B_0\gtrsim5-8 \mu$G, which is below the 25 $\mu$G inferred from Faraday rotation measurements, whereas, for $\alpha\lesssim2.1$, the hadronic interpretation of the diffuse radio emission is in contrast with our gamma-ray flux upper limits independently of the magnetic field strength.

51 citations


Journal ArticleDOI
Max Ludwig Ahnen1, Stefano Ansoldi2, L. A. Antonelli3, P. Antoranz4  +155 moreInstitutions (27)
TL;DR: In this paper, the authors reported an updated measurement of the NGC 1275 spectrum, which is described well by a power law with a photon index Γ = 3.6 ± 0.2.
Abstract: Clusters of galaxies are expected to be reservoirs of cosmic rays (CRs) that should produce diffuse γ-ray emission due to their hadronic interactions with the intra-cluster medium. The nearby Perseus cool-core cluster, identified as the most promising target to search for such an emission, has been observed with the MAGIC telescopes at very-high energies (VHE, E ≥ 100 GeV) for a total of 253 hr from 2009 to 2014. The active nuclei of NGC 1275, the central dominant galaxy of the cluster, and IC 310, lying at about 0.6o from the centre, have been detected as point-like VHE γ-ray emitters during the first phase of this campaign. We report an updated measurement of the NGC 1275 spectrum, which is described well by a power law with a photon index Γ = 3.6 ± 0.2_(stat) ± 0.2_(syst) between 90 GeV and 1200 GeV. We do not detect any diffuse γ-ray emission from the cluster and so set stringent constraints on its CR population. To bracket the uncertainties over the CR spatial and spectral distributions, we adopt different spatial templates and power-law spectral indexes α. For α = 2.2, the CR-to-thermal pressure within the cluster virial radius is constrained to be ≤ 1 − 2%, except if CRs can propagate out of the cluster core, generating a flatter radial distribution and releasing the CR-to-thermal pressure constraint to ≤ 20%. Assuming that the observed radio mini-halo of Perseus is generated by secondary electrons from CR hadronic interactions, we can derive lower limits on the central magnetic field, B_(0), that depend on the CR distribution. For α = 2.2, B_(0) ≥ 5 − 8 µG, which is below the ∼25 µG inferred from Faraday rotation measurements, whereas for α ≤ 2.1, the hadronic interpretation of the diffuse radio emission contrasts with our γ-ray flux upper limits independently of the magnetic field strength.

48 citations


Journal ArticleDOI
Anushka Udara Abeysekara1, S. Archambault2, A. Archer3, Wystan Benbow4  +224 moreInstitutions (48)
TL;DR: In this paper, the authors proposed a method to use the Fermi Guest Investigator grant for the Spanish MINECO under the NASA Earth and Space Science Fellowship Program (ESF).
Abstract: U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; German BMBF; German MPG; Italian INFN; Italian INAF; Swiss National Fund SNF; ERDF under the Spanish MINECO [FPA2015-69818-P, FPA2012-36668, FPA2015-68278-P, FPA2015-69210-C6-2-R, FPA2015-69210-C6-4-R, FPA2015-69210-C6-6-R, AYA2013-47447-C3-1-P, AYA2015-71042-P, ESP2015-71662-C2-2-P, CSD2009-00064]; Japanese JSPS; Japanese MEXT; Spanish Centro de Excelencia "Severo Ochoa" [SEV-2012-0234, SEV-2015-0548]; Unidad de Excelencia "Maria de Maeztu" [MDM-2014-0369]; Academy of Finland [268740]; Croatian Science Foundation (HrZZ) Project [09/176]; University of Rijeka Project [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW [745/N-HESS-MAGIC/2010/0]; Fermi Guest Investigator grants - NASA [NNX12AO93G, NNX15AU81G]; NASA [NNX08AW31G, NNX11A043G]; NSF [AST-0808050, AST-1109911]; International Fulbright Science and Technology Award; NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX14AQ07H]

38 citations


Journal ArticleDOI
M. G. Aartsen1, K. Abraham2, Markus Ackermann, Jenni Adams3  +552 moreInstitutions (87)
TL;DR: In this paper, the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS) is described and reported.
Abstract: We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e.g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.

37 citations


Journal ArticleDOI
Max Ludwig Ahnen1, Stefano Ansoldi2, L. A. Antonelli3, P. Antoranz4  +167 moreInstitutions (25)
TL;DR: In this article, the gamma-ray spectra from the Geminga pulsar were analyzed with the MAGIC telescopes, yielding 63 hours of good-quality data, and searched for emission from the pulsar and pulsar wind nebula.
Abstract: The Geminga pulsar, one of the brighest gamma-ray sources, is a promising candidate for emission of very-high-energy (VHE > 100 GeV) pulsed gamma rays. Also, detection of a large nebula have been claimed by water Cherenkov instruments. We performed deep observations of Geminga with the MAGIC telescopes, yielding 63 hours of good-quality data, and searched for emission from the pulsar and pulsar wind nebula. We did not find any significant detection, and derived 95% confidence level upper limits. The resulting upper limits of 5.3 × 10^(−13) TeV cm^(−2)s^(−1) for the Geminga pulsar and 3.5 × 10^(−12) TeV cm^(−2)s^(−1) for the surrounding nebula at 50 GeV are the most constraining ones obtained so far at VHE. To complement the VHE observations, we also analyzed 5 years of Fermi-LAT data from Geminga, finding that the sub-exponential cut-off is preferred over the exponential cut-off that has been typically used in the literature. We also find that, above 10 GeV, the gamma-ray spectra from Geminga can be described with a power law with index softer than 5. The extrapolation of the power-law Fermi-LAT pulsed spectra to VHE goes well below the MAGIC upper limits, indicating that the detection of pulsed emission from Geminga with the current generation of Cherenkov telescopes is very difficult.

31 citations


Journal ArticleDOI
TL;DR: In this article, the power spectral density distribution of a single-zone synchrotron self-Compton model with a power-law model was investigated at the source of the strongest flaring event at TeV energies in 2014.
Abstract: Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three "target-of-opportunity" (ToO) observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering X-ray and optical/ultraviolet bands) and VERITAS (covering TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi-LAT) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g. the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at $\gtrsim 4\times 10^{-4}$ Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.

28 citations


Journal ArticleDOI
Max Ludwig Ahnen1, Stefano Ansoldi2, L. A. Antonelli3, P. Antoranz4  +164 moreInstitutions (25)
TL;DR: In this paper, a four-year campaign performed by MAGIC together with archival data concentrating on a search for a long-timescale signature in the VHE emission from LS I +61o303 was reported.
Abstract: Context. The gamma-ray binary LS I +61o303 is a well-established source from centimeter radio up to very high energy (VHE; E > 100 GeV). The broadband emission shows a periodicity of ∼26.5 days, coincident with the orbital period. A longer (super-orbital) period of 1667 ± 8 days was proposed from radio variability and confirmed using optical and high-energy (HE; E ? 100 MeV) gamma-ray observations. In this paper, we report on a four-year campaign performed by MAGIC together with archival data concentrating on a search for a long-timescale signature in the VHE emission from LS I +61o303. Aims. We focus on the search for super-orbital modulation of the VHE emission, similar to that observed at other energies, and on the search for correlations between TeV emission and an optical determination of the extension of the circumstellar disk. Methods. A four-year campaign has been carried out using the MAGIC telescopes. The source was observed during the orbital phases when the periodic VHE outbursts have occurred (φ = 0.55 – 0.75, one orbit = 26.496 days). Additionally, we included archival MAGIC observations and data published by the VERITAS collaboration in these studies. For the correlation studies, LS I +61◦303 has also been observed during the orbital phases where sporadic VHE emission had been detected in the past (φ = 0.75 – 1.0). These MAGIC observations were simultaneous with optical spectroscopy from the LIVERPOOL telescope. Results. The TeV flux of the periodical outburst in orbital phases φ = 0.5 – 0.75 was found to show yearly variability consistent with the long-term modulation of ∼4.5 years found in the radio band. This modulation of the TeV flux can be well described by a sine function with a best-fit period of 1610±58 days. The complete data, including archival observations, span two super-orbital periods. There is no evidence for a correlation between the TeV emission and the mass-loss rate of the Be star, but this may be affected by the strong, short-timescale (as short as intra-day) variation displayed by the Hα fluxes.

Journal ArticleDOI
TL;DR: In this article, the gamma-ray spectra from the Geminga pulsar were analyzed with the MAGIC telescopes, yielding 63 hours of good-quality data, and searched for emission from the pulsar and pulsar wind nebula.
Abstract: The Geminga pulsar, one of the brighest gamma-ray sources, is a promising candidate for emission of very-high-energy (VHE > 100 GeV) pulsed gamma rays. Also, detection of a large nebula have been claimed by water Cherenkov instruments. We performed deep observations of Geminga with the MAGIC telescopes, yielding 63 hours of good-quality data, and searched for emission from the pulsar and pulsar wind nebula. We did not find any significant detection, and derived 95% confidence level upper limits. The resulting upper limits of 5.3 x 10^{-13} TeV cm^{-2} s^{-1} for the Geminga pulsar and 3.5 x 10^{-12} TeV cm^{-2} s^{-1} for the surrounding nebula at 50 GeV are the most constraining ones obtained so far at VHE. To complement the VHE observations, we also analyzed 5 years of Fermi-LAT data from Geminga, finding that the sub-exponential cut-off is preferred over the exponential cut-off that has been typically used in the literature. We also find that, above 10 GeV, the gamma-ray spectra from Geminga can be described with a power law with index softer than 5. The extrapolation of the power-law Fermi-LAT pulsed spectra to VHE goes well below the MAGIC upper limits, indicating that the detection of pulsed emission from Geminga with the current generation of Cherenkov telescopes is very difficult.

Journal ArticleDOI
Max Ludwig Ahnen1, Stefano Ansoldi2, L. A. Antonelli3, P. Antoranz4  +152 moreInstitutions (21)
TL;DR: In this paper, a four-year campaign performed by MAGIC together with archival data concentrating on a search for a long timescale signature in the VHE emission was presented.
Abstract: The gamma-ray binary LS I +61$^{\circ}$303 is a well established source from centimeter radio up to very high energy (VHE; E$>$100 GeV). Its broadband emission shows a periodicity of $\sim$26.5 days, coincident with the orbital period. A longer (super-orbital) period of 1667 $\pm$ 8 days was discovered in radio and confirmed in optical and high energy (HE; E>100 MeV) gamma-ray observations. We present a four-year campaign performed by MAGIC together with archival data concentrating on a search for a long timescale signature in the VHE emission. We focus on the search for super-orbital modulation of the VHE peak and on the search for correlations between TeV emission and optical determination of the extension of the circumstellar disk. A four-year campaign has been carried out by MAGIC. The source was observed during the orbital phases when the periodic VHE outbursts have occurred ($\phi$=0.55-0.75). Additionally, we included archival MAGIC observations and data published by the VERITAS collaboration in these studies. For the correlation studies, LS I +61$^{\circ}$303 has also been observed during the orbital phases where sporadic VHE emission had been detected in the past ($\phi$=0.75-1.0). These MAGIC observations were simultaneous with optical spectroscopy from the LIVERPOOL telescope. The TeV flux of the periodical outburst in orbital phases $\phi$=0.5--0.75 was found to show yearly variability consistent with the $\sim$4.5 years long-term modulation found in the radio band. This modulation of the TeV flux can be well described by a sine function with the best fit period of $1610\pm 58$ days. The complete dataset span two super-orbital periods. There is no evidence for a correlation between the TeV emission and the mass-loss rate of the Be star but this may be affected by the strong, short timescale (as short as intra-day) variation displayed by the H$\alpha$ fluxes.

Journal ArticleDOI
TL;DR: In this article, the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS) is described and reported.
Abstract: We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e.g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.