scispace - formally typeset
Search or ask a question

Showing papers by "Margarita Karovska published in 2010"


Journal ArticleDOI
TL;DR: The Chandra Source Catalog (CSC) as mentioned in this paper is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual Xray sources, and is designed to satisfy the needs of a broad-based group of scientists.
Abstract: The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public Advanced CCD Imaging Spectrometer imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents 30''. The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports scientific analysis using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources, so that users can perform detailed further analysis using existing tools. The catalog includes real X-ray sources detected with flux estimates that are at least 3 times their estimated 1σ uncertainties in at least one energy band, while maintaining the number of spurious sources at a level of 1 false source per field for a 100 ks observation. For each detected source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics, derived from the observations in which the source is detected. In addition to these traditional catalog elements, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively, including source images, event lists, light curves, and spectra from each observation in which a source is detected.

527 citations


Journal ArticleDOI
TL;DR: The Chandra Source Catalog (CSC) as mentioned in this paper is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual Xray sources, and is designed to satisfy the needs of a broad-based group of scientists.
Abstract: The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public ACIS imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents <~ 30''. The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports scientific analysis using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources, so that users can perform detailed further analysis using existing tools. The catalog includes real X-ray sources detected with flux estimates that are at least 3 times their estimated 1 sigma uncertainties in at least one energy band, while maintaining the number of spurious sources at a level of <~ 1 false source per field for a 100 ks observation. For each detected source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics, derived from the observations in which the source is detected. In addition to these traditional catalog elements, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively.

493 citations


Journal ArticleDOI
TL;DR: In this paper, Chandra ACIS-I was used to observe Cepheid Polaris (α UMi A: F7 Ib [Aa] + F6 V [Ab]) for 10 ks with an X-ray source with log LX = 28.89 erg s−1 (0.3-8 keV) and kT = 0.6 keV.
Abstract: We have observed Cepheid Polaris (α UMi A: F7 Ib [Aa] + F6 V [Ab]) with Chandra ACIS-I for 10 ks. An X-ray source was found at the location of Polaris with log LX = 28.89 erg s–1 (0.3-8 keV) and kT = 0.6 keV. A spectrum this soft could come from either the supergiant or the dwarf, as shown by comparable coronal stars. Two resolved low-mass visual companions, "C" and "D," are not physical members of the system based on the lack of X-rays (indicating an age older than the Cepheid) and inconsistent proper motions. Polaris B is not an X-ray source, consistent with its early F spectral type, and probably does not have a lower mass companion itself. A possible more distant member is identified, and an additional less plausible one. This provides a complete census of companions out to 0.1 pc covering a mass ratio range of an order of magnitude and a ΔV of nearly 15 mag.

25 citations


Journal ArticleDOI
TL;DR: In this article, a non-relativistic precessing jet was detected in CH Cyg for the first time in X-rays, and the authors carried out coordinated Chandra, Hubble Space Telescope (HST), and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium.
Abstract: Jets have been detected in only a few symbiotic binaries to date, and CH Cyg is one of them. In 2001, a non-relativistic jet was detected in CH Cyg for the first time in X-rays. We carried out coordinated Chandra, Hubble Space Telescope (HST), and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium. We detected the jet with Chandra and HST and determined that the apex has expanded to the south from {approx}300 AU to {approx}1400 AU, with the shock front propagating with velocity <100 km s{sup -1}. The shock front has significantly slowed down since 2001. Unexpectedly, we also discovered a powerful jet in the NE-SW direction, in the X-ray, optical and radio. This jet has a multi-component structure, including an inner jet and a counterjet at {approx}170 AU, and a SW component ending in several clumps extending out to {approx}750 AU. The structure of the jet and the curvature of the outer portion of the SW jet suggest an episodically powered precessing jet or a continuous precessing jet with occasional mass ejections or pulses. We carried out detailed spatial mapping of the X-ray emission and correlation with themore » optical and radio emission. X-ray spectra were extracted from the central source, inner NE counterjet, and the brightest clump at a distance of {approx}500 AU from the central source. We discuss the initial results of our analyses, including the multi-component spectral fitting of the jet components and of the central source.« less

23 citations


Journal ArticleDOI
TL;DR: In this article, a non-relativistic jet was detected in CH Cyg for the first time in X-rays, and the authors carried out coordinated Chandra, HST, and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium.
Abstract: Jets have been detected in only a few symbiotic binaries to date, and CH Cyg is one of them. In 2001, a non-relativistic jet was detected in CH Cyg for the first time in X-rays. We carried out coordinated Chandra, HST, and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium. We detected the jet with Chandra and HST and determined that the apex has expanded to the South from about 300 AU to about 1400 AU, with the shock front propagating with velocity < 100 km/s. The shock front has significantly slowed down since 2001. Unexpectedly, we also discovered a powerful jet in the NE-SW direction, in the X-ray, optical and radio. This jet has a multi-component structure, including an inner jet and a counter-jet at about 170 AU, and a SW component ending in several clumps extending out to approximately 750 AU. The structure of the jet and the curvature of the outer portion of the SW jet suggest an episodically powered precessing jet, or a continuous precessing jet with occasional mass ejections or pulses. We carried out detailed spatial mapping of the X-ray emission and correlation with the optical and radio emission. X-ray spectra were extracted of the central source, inner NE counter jet, and the brightest clump at a distance of approximately 500 AU from the central source. We discuss the initial results of our analyses, including the multi-component spectral fitting of the jet-components and of the central source.

21 citations


Posted Content
TL;DR: The Stellar Imager mission concept is a space-based UV/Optical interferometer designed to resolve surface magnetic activity and subsurface structure and flows of a population of Sun-like stars, in order to accelerate the development and validation of a predictive dynamo model for the Sun as discussed by the authors.
Abstract: The Stellar Imager mission concept is a space-based UV/Optical interferometer designed to resolve surface magnetic activity and subsurface structure and flows of a population of Sun-like stars, in order to accelerate the development and validation of a predictive dynamo model for the Sun and enable accurate long-term forecasting of solar/stellar magnetic activity.

1 citations