scispace - formally typeset
Search or ask a question

Showing papers by "Maria Svelto published in 2015"


Journal ArticleDOI
10 Dec 2015-Nature
TL;DR: It is shown that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM, and is identified as a novel effector of FGF signalling in bone.
Abstract: Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes.

155 citations


Journal ArticleDOI
02 Apr 2015-PLOS ONE
TL;DR: The role of the LMNA gene is expanded in the pathogenesis of cardiac laminopathies, suggesting that LMNA should be included in mutation screening of patients with suspected arrhythmogenic cardiomyopathy, particularly when they have ECG evidence for conduction defects.
Abstract: Mutations in the lamin A/C gene (LMNA) were associated with dilated cardiomyopathy (DCM) and, recently, were related to severe forms of arrhythmogenic right ventricular cardiomyopathy (ARVC). Both genetic and phenotypic overlap between DCM and ARVC was observed; molecular pathomechanisms leading to the cardiac phenotypes caused by LMNA mutations are not yet fully elucidated. This study involved a large Italian family, spanning 4 generations, with arrhythmogenic cardiomyopathy of different phenotypes, including ARVC, DCM, system conduction defects, ventricular arrhythmias, and sudden cardiac death. Mutation screening of LMNA and ARVC-related genes PKP2, DSP, DSG2, DSC2, JUP, and CTNNA3 was performed. We identified a novel heterozygous mutation (c.418_438dup) in LMNA gene exon 2, occurring in a highly conserved protein domain across several species. This newly identified variant was not found in 250 ethnically-matched control subjects. Genotype-phenotype correlation studies suggested a co-segregation of the LMNA mutation with the disease phenotype and an incomplete and age-related penetrance. Based on clinical, pedigree, and molecular genetic data, this mutation was considered likely disease-causing. To clarify its potential pathophysiologic impact, functional characterization of this LMNA mutant was performed in cultured cardiomyocytes expressing EGFP-tagged wild-type and mutated LMNA constructs, and indicated an increased nuclear envelope fragility, leading to stress-induced apoptosis as the main pathogenetic mechanism. This study further expands the role of the LMNA gene in the pathogenesis of cardiac laminopathies, suggesting that LMNA should be included in mutation screening of patients with suspected arrhythmogenic cardiomyopathy, particularly when they have ECG evidence for conduction defects. The combination of clinical, genetic, and functional data contribute insights into the pathogenesis of this form of life-threatening arrhythmogenic cardiac laminopathy.

44 citations


Journal ArticleDOI
TL;DR: By up‐regulating the expression levels of AQP2, statins increase water reabsorption by the kidney, thus opening up a new avenue in treating patients with nephrogenic diabetes insipidus (NDI), a hereditary disease that yet lacks high‐powered and limited side effects therapy.
Abstract: Statins competitively inhibit hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase, resulting in reduced plasma total and low-density lipoprotein cholesterol levels. Recently, it has been shown that statins exert additional ‘pleiotropic’ effects by increasing expression levels of the membrane water channels aquaporin 2 (AQP2). AQP2 is localized mainly in the kidney and plays a critical role in determining cellular water content. This additional effect is independent of cholesterol homoeostasis, and depends on depletion of mevalonate-derived intermediates of sterol synthetic pathways, i.e. farnesylpyrophosphate and geranylgeranylpyrophosphate. By up-regulating the expression levels of AQP2, statins increase water reabsorption by the kidney, thus opening up a new avenue in treating patients with nephrogenic diabetes insipidus (NDI), a hereditary disease that yet lacks high-powered and limited side effects therapy. Aspects related to water balance determined by AQP2 in the kidney, as well as standard and novel therapeutic strategies of NDI are discussed.

33 citations


Journal ArticleDOI
TL;DR: The data demonstrate that the activation of CaSR in the collecting duct prevents the cAMP-dependent increase in AQP2-pS256 and water permeability, counteracting the short-term vasopressin response, and suggest the attractive concept that CaSR expressed in distinct nephron segments exerts a negative feedback on hormones acting through cAMP.
Abstract: We previously described that high luminal Ca 2+ in the renal collecting duct attenuates short-term vasopressin-induced aquaporin-2 (AQP2) trafficking through activation of the Ca 2+ -sensing receptor (CaSR). Here, we evaluated AQP2 phosphorylation and permeability, in both renal HEK-293 cells and in the dissected inner medullary collecting duct, in response to specific activation of CaSR with NPS-R568. In CaSR-transfected cells, CaSR activation drastically reduced the basal levels of AQP2 phosphorylation at S256 (AQP2-pS256), thus having an opposite effect to vasopressin action. When forskolin stimulation was performed in the presence of NPS-R568, the increase in AQP2-pS256 and in the osmotic water permeability were prevented. In the freshly isolated inner mouse medullar collecting duct, stimulation with forskolin in the presence of NPS-R568 prevented the increase in AQP2-pS256 and osmotic water permeability. Our data demonstrate that the activation of CaSR in the collecting duct prevents the cAMP-dependent increase in AQP2-pS256 and water permeability, counteracting the short-term vasopressin response. By extension, our results suggest the attractive concept that CaSR expressed in distinct nephron segments exerts a negative feedback on hormones acting through cAMP, conferring high sensitivity of hormone to extracellular Ca 2+ .

24 citations


Journal ArticleDOI
TL;DR: In renal cells RGZ elicits Ca2+ transients facilitating AQP2 exposure at the apical plasma membrane, thus increasing collecting duct water permeability, which suggests an unexplored application of RGZ in the treatment of pathological states characterized by impaired AQP 2 trafficking at the plasma membrane.
Abstract: Background/Aims: Thiazolidinediones are highly beneficial in the treatment of type II diabetes. However, they are also associated with edema and increased risk of congestive heart failure. Several studies demonstrated that rosiglitazone (RGZ) increases the abundance of aquaporin-2 (AQP2) at the plasma membrane of renal cells. The aim of this study was to investigate whether RGZ might activate a transduction pathway facilitating AQP2 membrane accumulation in renal cells. Methods: We analyzed the effect of RGZ on renal AQP2 intracellular trafficking in MCD4 renal cells by confocal microscopy and apical surface biotinylation. Cytosolic Ca2+ dynamics were measured by a video-imaging approach in single cell. Transient Receptor Potential (TRP) channels expression was determined by RT-PCR. Results: We showed that in MCD4 cells, short-term exposure to RGZ dramatically increases the amount of apically expressed AQP2 independently on cAMP production, PKA activation and AQP2 phosphorylation. RGZ elicited a cytosolic Ca2+ transient due to Ca2+ influx prevented by ruthenium red, suggesting the involvement of TRP plasma membrane channels. We identified TRPV6 as the possible candidate mediating this effect. Conclusions: Taken together these results provide a possible molecular mechanism explaining the increased AQP2 membrane expression under RGZ treatment: in renal cells RGZ elicits Ca2+ transients facilitating AQP2 exposure at the apical plasma membrane, thus increasing collecting duct water permeability. Importantly, this effect suggests an unexplored application of RGZ in the treatment of pathological states characterized by impaired AQP2 trafficking at the plasma membrane.

23 citations


Journal ArticleDOI
TL;DR: This work investigated the functional cross‐talk of CaR‐A843E with the Na+:K+:2Cl– co‐transporter, NKCC2, which provides NaCl reabsorption in the TAL, resulting in renal loss of NaCl in the absence of mutations in renal Na+ and Cl− ion transporters.

20 citations


Journal ArticleDOI
TL;DR: In this paper, conditionally immortalized proximal tubular epithelial cell line (ciPTEC) obtained by immortalizing and subcloning cells exfoliated in the urine of a healthy subject expresses functional endogenous CaSR.
Abstract: The calcium-sensing receptor (CaSR) is a G protein-coupled receptor, which plays an essential role in regulating Ca(2+) homeostasis. Here we show that conditionally immortalized proximal tubular epithelial cell line (ciPTEC) obtained by immortalizing and subcloning cells exfoliated in the urine of a healthy subject expresses functional endogenous CaSR. Immunolocalization studies of polarized ciPTEC revealed the apical localization of the receptor. By Western blotting of ciPTEC lysates, both monomeric and dimeric forms of CaSR at 130 and ∼250 kDa, respectively, were detected. Functional studies indicated that both external calcium and the positive CaSR allosteric modulator, NPS-R568, induced a significant increase in cytosolic calcium, proving a high sensitivity of the endogenous receptor to its agonists. Calcium depletion from the endoplasmic reticulum using cyclopiazonic acid abolished the increase in cytosolic calcium elicited by NPS-R568, confirming calcium exit from intracellular stores. Activation of CaSR by NPS-R significantly reduced the increase in cAMP elicited by forskolin (FK), a direct activator of adenylate cyclase, further confirming the functional expression of the receptor in this cell line. CaSR expressed in ciPTEC was found to interact with Gq as a downstream effector, which in turn can cause release of calcium from intracellular stores via phospholipase C activation. We conclude that human proximal tubular ciPTEC express functional CaSR and respond to its activation with a release of calcium from intracellular stores. These cell lines represent a valuable tool for research into the disorder associated with gain or loss of function of the CaSR by producing cell lines from patients.

19 citations


Journal ArticleDOI
24 Nov 2015-PLOS ONE
TL;DR: It is shown that CNS-extracted OAPs are crucial elements in order to perform an efficient AQP4-IgG test and the OAP-ELISA developed represents a valid alternative to the CBA currently used.
Abstract: Serological markers of Nuromyelitis Optica (NMO), an autoimmune disorder of the central nervous system, are autoantibodies targeting the astrocytic water channel aquaporin-4 (AQP4). We have previously demonstrated that the main epitopes for these autoantibodies (AQP4-IgG) are generated by the supramolecular arrangement of AQP4 tetramers into an Orthogonal Array of Particles (OAPs). Many tests have been developed to detect AQP4-IgG in patient sera but several procedural issues affect OAP assembly and consequently test sensitivity. To date, the protein based ELISA test shows the lowest sensitivity while representing a valid alternative to the more sensitive cell based assay (CBA), which, however, shows economic, technical and interpretation problems. Here we have developed a high perfomance ELISA in which native OAPs are used as the molecular target. To this aim a native size exclusion chromatography method has been developed to isolate integral, highly pure and AQP4-IgG-recognized OAPs from rat brain. These OAPs were immobilized and oriented on a plastic plate by a sandwich approach and 139 human sera were tested, including 67 sera from NMO patients. The OAP-ELISA showed a 99% specificity and a higher sensitivity (91%) compared to the CBA test. A comparative analysis revealed an end-point titer three orders of magnitude higher than the commercial ELISA and six times higher than our in-house CBA test. We show that CNS-extracted OAPs are crucial elements in order to perform an efficient AQP4-IgG test and the OAP-ELISA developed represents a valid alternative to the CBA currently used.

5 citations