scispace - formally typeset
D

Diego L. Medina

Researcher at Spanish National Research Council

Publications -  75
Citations -  18203

Diego L. Medina is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: TFEB & Autophagy. The author has an hindex of 35, co-authored 64 publications receiving 15207 citations. Previous affiliations of Diego L. Medina include Max Planck Society.

Papers
More filters
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 - 
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

A Gene Network Regulating Lysosomal Biogenesis and Function

TL;DR: It is found that most lysosomal genes exhibit coordinated transcriptional behavior and are regulated by the transcription factor EB (TFEB), providing a potential therapeutic target to enhance cellular clearing in lysOSomal storage disorders and neurodegenerative diseases.
Journal ArticleDOI

A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB

TL;DR: It is shown that the Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis, colocalizes with master growth regulator mTOR complex 1 (mTORC1) on the lysOSomal membrane and the Rag GTPase complex is both necessary and sufficient to regulate starvation‐ and stress‐induced nuclear translocation of TFEB.
Journal ArticleDOI

Signals from the lysosome: a control centre for cellular clearance and energy metabolism.

TL;DR: The identification of a master regulator, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy has revealed how the lyssome adapts to environmental cues, such as starvation, and targeting TFEB may provide a novel therapeutic strategy for modulating lysOSomal function in human disease.