scispace - formally typeset
Search or ask a question

Showing papers by "Maria Svelto published in 2021"


Journal ArticleDOI
TL;DR: In this article, 30 serum cytokines/chemokines were profiled in patients belonging to four different families carrying pathogenic lmna mutations segregating with cardiac phenotypes at different stages of severity and in healthy subjects.
Abstract: Mutations in Lamin A/C gene (lmna) cause a wide spectrum of cardiolaminopathies strictly associated with significant deterioration of the electrical and contractile function of the heart. Despite the continuous flow of biomedical evidence, linking cardiac inflammation to heart remodelling in patients harbouring lmna mutations is puzzling. Therefore, we profiled 30 serum cytokines/chemokines in patients belonging to four different families carrying pathogenic lmna mutations segregating with cardiac phenotypes at different stages of severity (n = 19) and in healthy subjects (n = 11). Regardless lmna mutation subtype, high levels of circulating granulocyte colony-stimulating factor (G-CSF) and interleukin 6 (IL-6) were found in all affected patients' sera. In addition, elevated levels of Interleukins (IL) IL-1Ra, IL-1β IL-4, IL-5 and IL-8 and the granulocyte-macrophage colony-stimulating factor (GM-CSF) were measured in a large subset of patients associated with more aggressive clinical manifestations. Finally, the expression of the pro-inflammatory 70 kDa heat shock protein (Hsp70) was significantly increased in serum exosomes of patients harbouring the lmna mutation associated with the more severe phenotype. Overall, the identification of patient subsets with overactive or dysregulated myocardial inflammatory responses could represent an innovative diagnostic, prognostic and therapeutic tool against Lamin A/C cardiomyopathies.

5 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of the beta-3 adrenergic receptor (BAR3) in the regulation of NCC in distal convoluted tubule (DCT) cells expressing the thiazide-sensitive sodium-chloride cotransporter.
Abstract: We previously showed that the beta-3 adrenergic receptor (BAR3) is expressed in most segments of the nephron where its agonism promotes a potent antidiuretic effect. We localized BAR3 in distal convoluted tubule (DCT) cells expressing the thiazide-sensitive sodium-chloride cotransporter (NCC). Aim of this study is to investigate the possible functional role of BAR3 on NCC modulation in DCT cells. Here, we found that, in mice, the knockout of BAR3 was paralleled by a significant attenuation of NCC phosphorylation, paralleled by reduced expression and activation of STE-20/SPS1-related proline-alanine-rich kinase (SPAK) and WNKs the main kinases involved in NCC activation. Conversely, in BAR1/2 knockout mice, we found reduced NCC abundance with no changes in the phosphorylation state of NCC. Moreover, selective BAR3 agonism promotes both SPAK and NCC activation in wild-type mouse kidney slices. In conclusion, our findings suggest a novel role for BAR3 in the regulation of NCC in DCT.

2 citations


Journal ArticleDOI
TL;DR: In this article, an immortalized cell line of human mesothelium (HMC) and measured the osmotically-driven transmesothelial water flux in the absence or in the presence of AQP1.
Abstract: We previously showed that mesothelial cells in human peritoneum express the water channel aquaporin 1 (AQP1) at the plasma membrane, suggesting that, although in a non-physiological context, it may facilitate osmotic water exchange during peritoneal dialysis (PD). According to the three-pore model that predicts the transport of water during PD, the endothelium of peritoneal capillaries is the major limiting barrier to water transport across peritoneum, assuming the functional role of the mesothelium, as a semipermeable barrier, to be negligible. We hypothesized that an intact mesothelial layer is poorly permeable to water unless AQP1 is expressed at the plasma membrane. To demonstrate that, we characterized an immortalized cell line of human mesothelium (HMC) and measured the osmotically-driven transmesothelial water flux in the absence or in the presence of AQP1. The presence of tight junctions between HMC was investigated by immunofluorescence. Bioelectrical parameters of HMC monolayers were studied by Ussing Chambers and transepithelial water transport was investigated by an electrophysiological approach based on measurements of TEA+ dilution in the apical bathing solution, through TEA+-sensitive microelectrodes. HMCs express Zo-1 and occludin at the tight junctions and a transepithelial vectorial Na+ transport. Real-time transmesothelial water flux, in response to an increase of osmolarity in the apical solution, indicated that, in the presence of AQP1, the rate of TEA+ dilution was up to four-fold higher than in its absence. Of note, we confirmed our data in isolated mouse mesentery patches, where we measured an AQP1-dependent transmesothelial osmotic water transport. These results suggest that the mesothelium may represent an additional selective barrier regulating water transport in PD through functional expression of the water channel AQP1.

2 citations