scispace - formally typeset
Search or ask a question

Showing papers by "Mauro Citterio published in 2005"


Journal ArticleDOI
Mara Bruzzi1, J Adey2, A. Al-Ajili3, P Alexandrov4  +281 moreInstitutions (47)
TL;DR: The latest advancements within the RD50 collaboration on radiation hard semiconductor detectors are reviewed and discussed in this work as mentioned in this paper, which includes the development of new or defect engineered detector materials (SiC, GaN, Czochralski and epitaxial silicon), the improvement of present detector designs and the understanding of the microscopic defects causing the degradation of the irradiated detectors.
Abstract: An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 1035 cm−2 s−1 has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 1016 cm−2. The CERN-RD50 project “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” has been established in 2002 to explore detector materials and technologies that will allow to operate devices up to, or beyond, this limit. The strategies followed by RD50 to enhance the radiation tolerance include the development of new or defect engineered detector materials (SiC, GaN, Czochralski and epitaxial silicon, oxygen enriched Float Zone silicon), the improvement of present detector designs and the understanding of the microscopic defects causing the degradation of the irradiated detectors. The latest advancements within the RD50 collaboration on radiation hard semiconductor detectors will be reviewed and discussed in this work.

57 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present results from radiation hardness tests and discuss the implications of the absorbed radiation dose on the Silicon Vertex Tracker lifetime on the PEP-II storage ring at the Stanford Linear Accelerator Center.
Abstract: The Silicon Vertex Tracker of the B a B ar experiment is a five-layer, double-sided AC-coupled silicon microstrip detector operating on the PEP-II storage ring at the Stanford Linear Accelerator Center. After more than four years of running, the silicon sensors and the front-end electronics in the inner layer have absorbed radiation doses up to 2 Mrad. In this paper we present results from radiation hardness tests and discuss the implications of the absorbed radiation dose on the Silicon Vertex Tracker lifetime.

3 citations