scispace - formally typeset
Search or ask a question

Showing papers by "Michel Goedert published in 2008"


Journal ArticleDOI
TL;DR: The late appearance and low abundance of tau ending at D421 indicate that it is unlikely that truncation at this site is necessary for the assembly of t Tau into filaments in Alzheimer's disease and other tauopathies.
Abstract: Recent evidence has suggested that truncation of tau protein at the caspase cleavage site D421 precedes hyperphosphorylation and may be necessary for the assembly of tau into filaments in Alzheimer's disease and other tauopathies. Here we have investigated the time course of the appearance of phosphorylated and truncated tau in the brain and spinal cord of mice transgenic for mutant human P301S tau protein. This mouse line recapitulates the essential molecular and cellular features of the human tauopathies, including tau hyperphosphorylation, tau filament formation, and neurodegeneration. Soluble tau was strongly phosphorylated at 1 to 6 months of age. Low levels of phosphorylated, sarkosyl-insoluble tau were detected at 2 months, with a steady increase up to 6 months of age. Tau truncated at D421 was detected at low levels in Tris-soluble and detergent-soluble tau at 3 to 6 months of age. By immunoblotting, it was not detected in sarkosyl-insoluble tau. However, by immunoelectron microscopy, a small percentage of tau in filaments from brain and spinal cord of transgenic mice was truncated at D421. Similar findings were obtained using dispersed filaments from Alzheimer's disease and FTDP-17 brains. The late appearance and low abundance of tau ending at D421 indicate that it is unlikely that truncation at this site is necessary for the assembly of tau into filaments.

117 citations


Journal ArticleDOI
TL;DR: It is proposed that 4-repeat tau-immunoreactive GGIs are the neuropathologic hallmark of a distinct sporadic tauopathy with variable clinical presentations that include frontotemporal dementia and occasionally upper motor neuron disease.
Abstract: Frontotemporal lobar degenerations are a group of disorders characterized by circumscribed degeneration of the frontal and temporal lobes and diverse histopathologic features. We report clinical, neuropathologic, ultrastructural, biochemical, and genetic data on 7 individuals with a 4-repeat tauopathy characterized by the presence of globular glial inclusions (GGIs) in brain white matter. Clinical manifestations were compatible with the behavioral variant of frontotemporal dementia and included motor neuron symptoms; there was prominent neuronal loss in the frontal and temporal cortex, subiculum, and amygdala. The surrounding white matter showed abundant GGIs composed of abnormal filaments present mostly in oligodendrocytes. The severity of white matter tau abnormalities correlated with a reduction in myelin and axons and with microglial activation. Western blotting of sarkosyl-insoluble tau demonstrated the presence of 2 major tau bands of 64 and 68 kd. No mutations in the microtubule-associated protein tau gene were detected in 2 affected individuals. We propose that 4-repeat tau-immunoreactive GGIs are the neuropathologic hallmark of a distinct sporadic tauopathy with variable clinical presentations that include frontotemporal dementia and occasionally upper motor neuron disease. This type of tauopathy with GGIs expands the group of neurodegenerativedisorders in which oligodendroglial pathology predominates, beyond the synucleinopathy multiple system atrophy disorders.

113 citations


Journal ArticleDOI
01 Jan 2008-Brain
TL;DR: This multidisciplinary study provides a comprehensive description of the natural history of disease in one of the largest known families with FTDP-17T.
Abstract: Multiple system tauopathy with presenile dementia (MSTD) is an inherited disease caused by a (g) to (a) transition at position +3 in intron 10 of Tau. It belongs to the spectrum of frontotemporal dementia and parkinsonism linked to chromosome 17 with mutations in Tau (FTDP-17T). Here we present the longitudinal clinical, neuropsychological, neuroimaging, neuropathological, biochemical and genetic characterization of the MSTD family. Presenting signs were consistent with the behavioural variant of frontotemporal dementia in 17 of 21 patients. Two individuals presented with an atypical form of progressive supranuclear palsy and two others with either severe postural imbalance or an isolated short-term memory deficit. Memory impairment was present at the onset in 15 patients, with word finding difficulties and stereotyped speech also being common. Parkinsonism was first noted 3 years after the onset of symptoms. Neuroimaging showed the most extensive grey matter loss in the hippocampus, parahippocampal gyrus and frontal operculum/insular cortex of the right hemisphere and, to a lesser extent, in the anterior cingulate gyrus, head of the caudate nucleus and the posterolateral orbitofrontal cortex and insular cortex bilaterally. Neuropathologically, progressive nerve cell loss, gliosis and coexistent neuronal and/or glial deposits consisting mostly of 4-repeat tau were present in frontal, cingulate, temporal and insular cortices, white matter, hippocampus, parahippocampus, basal ganglia, selected brainstem nuclei and spinal cord. Tau haplotyping indicated that specific haplotypes of the wild-type allele may act as modifiers of disease presentation. Quantitative neuroimaging has been used to analyse the progression of atrophy in affected individuals and for predicting disease onset in an asymptomatic mutation carrier. This multidisciplinary study provides a comprehensive description of the natural history of disease in one of the largest known families with FTDP-17T.

105 citations


Journal ArticleDOI
24 Oct 2008-Brain
TL;DR: Oskar Fischer's work on dementia in the context of his life and time is discussed, which delineated the clinicopathological entity that is now known as Alzheimer's disease.
Abstract: The centenary of Alois Alzheimer's description of the case of Auguste Deter has renewed interest in the early history of dementia research. In his 1907 paper Alzheimer described the presence of plaques and tangles in one case of presenile dementia. In the same year, Oskar Fischer reported neuritic plaques in 12 cases of senile dementia. These were landmark findings in the history of research in dementia because they delineated the clinicopathological entity that is now known as Alzheimer's disease. Although much has been written about Alzheimer, only little is known about Fischer. The present article discusses Fischer's work on dementia in the context of his life and time.

104 citations


Journal ArticleDOI
TL;DR: The findings suggest that the density and/or accessibility of AS binding sites in vivo are significantly less than those associated with amyloid‐β peptide lesions and Lewy bodies pathology is unlikely to contribute significantly to the retention of PIB in positron emission tomography imaging studies.
Abstract: Amyloid containing deposits are a defining neuropathological feature of a wide range of dementias and movement disorders. The positron emission tomography tracer PIB (Pittsburgh Compound-B, 2-[4'-(methylamino)phenyl]-6-hydroxybenzothiazole) was developed to target senile plaques, an amyloid containing pathological hallmark of Alzheimer's disease, formed from the amyloid-beta peptide. Despite the fact that PIB was developed from the pan-amyloid staining dye thioflavin T, no detailed characterisation of its interaction with other amyloid structures has been reported. In this study, we demonstrate the presence of a high affinity binding site (K(d) approximately 4 nM) for benzothiazole derivatives, including [3H]-PIB, on alpha-synuclein (AS) filaments generated in vitro, and further characterise this binding site through the use of radioligand displacement assays employing 4-N-methylamino-4'-hydroxystilbene (SB13) (K(i) = 87 nM) and 2-(1-{6-[(2-fluoroethyl(methyl)amino]-2-naphthyl}ethylidene)malononitrile (FDDNP) (K(i) = 210 nM). Despite the presence of a high-affinity binding site on AS filaments, no discernible interaction of [3H]-PIB was detected with amygdala sections from Parkinson's disease cases containing frequent AS-immunoreactive Lewy bodies and related neurities. These findings suggest that the density and/or accessibility of AS binding sites in vivo are significantly less than those associated with amyloid-beta peptide lesions. Lewy bodies pathology is therefore unlikely to contribute significantly to the retention of PIB in positron emission tomography imaging studies.

89 citations


Journal ArticleDOI
TL;DR: Incomplete mouse models have been key to the development of Aβ42-targeted therapies, as well as to the current understanding of the interrelationship between cerebral β-amyloidosis and tau neurofibrillary lesions, and are currently being used to develop novel diagnostic agents for in vivo imaging.
Abstract: To study Alzheimer’s disease (AD), a variety of mouse models has been generated through the overexpression of the amyloid precursor protein and/or the presenilins harboring one or several mutations found in familial AD. With aging, these mice develop several lesions similar to those of AD, including diffuse and neuritic amyloid deposits, cerebral amyloid angiopathy, dystrophic neurites and synapses, and amyloid-associated neuroinflammation. Other characteristics of AD, such as neurofibrillary tangles and nerve cell loss, are not satisfactorily reproduced in these models. Mouse models that recapitulate only specific aspects of AD pathogenesis are of great advantage when deciphering the complexity of the disease and can contribute substantially to diagnostic and therapeutic innovations. Incomplete mouse models have been key to the development of Aβ42-targeted therapies, as well as to the current understanding of the interrelationship between cerebral β-amyloidosis and tau neurofibrillary lesions, and are currently being used to develop novel diagnostic agents for in vivo imaging.

82 citations


Journal ArticleDOI
TL;DR: FSB, a fluorescent Congo red derivative, labels tau inclusions in tissue sections from a mouse line transgenic for human P301S tau and in cases of familial frontotemporal dementia and sporadic Pick's disease, indicating that FSB can be used to detect filamentous t Tau in vivo.

44 citations