scispace - formally typeset
Search or ask a question
Author

Mira Mitra

Bio: Mira Mitra is an academic researcher from Indian Institute of Technology Kharagpur. The author has contributed to research in topics: Finite element method & Wave propagation. The author has an hindex of 21, co-authored 68 publications receiving 1466 citations. Previous affiliations of Mira Mitra include Indian Institute of Technology Bombay & Eaton Corporation.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide a state-of-the-art review of guided wave based structural health monitoring (SHM) and highlight the future directions and open areas of research in guided wave-based SHM.
Abstract: The paper provides a state of the art review of guided wave based structural health monitoring (SHM). First, the fundamental concepts of guided wave propagation and its implementation for SHM is explained. Following sections present the different modeling schemes adopted, developments in the area of transducers for generation, and sensing of wave, signal processing and imaging technique, statistical and machine learning schemes for feature extraction. Next, a section is presented on the recent advancements in nonlinear guided wave for SHM. This is followed by section on Rayleigh and SH waves. Next is a section on real-life implementation of guided wave for industrial problems. The paper, though briefly talks about the early development for completeness,. is primarily focussed on the recent progress made in the last decade. The paper ends by discussing and highlighting the future directions and open areas of research in guided wave based SHM.

664 citations

Journal ArticleDOI
TL;DR: In this article, a Lamb wave based nonlinear method is used to detect delamination in a composite laminate and a new hybrid method is introduced, wherein the spectral and temporal data are used together in order to locate a delamination.

99 citations

Journal ArticleDOI
TL;DR: In this paper, a wavelet based spectral finite element is developed for studying elastic wave propagation in 1-D connected waveguides, which circumvents several disadvantages of the conventional spectral element formulation using Fast Fourier Transforms (FFT) particularly in the study of transient dynamics.

90 citations

Journal ArticleDOI
TL;DR: In this article, an experimental study has been carried out to develop a baseline-free damage detection technique using the time reversibility of a Lamb wave, which is the process in which a response signal recorded at a receiver location is reversed in time and transmitted through the receiver to the original transmitter location.
Abstract: In this paper, an experimental study has been carried out to develop a baseline-free damage detection technique using the time reversibility of a Lamb wave. The experiments have been carried out on a metallic plate. Time reversibility is the process in which a response signal recorded at a receiver location is reversed in time and transmitted back through the receiver to the original transmitter location. In the absence of any defect or damage in the path between the transmitter–receiver locations, theoretically the signal received back at the original transmitter location (reconstructed signal) is identical to the original input signal. The initial part of the present work is aimed at understanding the time reversibility of a Lamb wave in an undamaged metallic plate. This involves a thorough study of different parameters such as frequency, pulse frequency band width, transducer size and the effects of tuning these parameters on the quality of a reconstructed input signal. This paper also suggests a method to mitigate the effects of the frequency dependent attenuation of Lamb wave modes (amplitude dispersion) and thus achieve better reconstruction for an undamaged plate. Finally, the time reversal process (TRP) is used to detect damage in an aluminium plate without using any information from the undamaged structure. A block mass, a notch and an area of surface erosion are considered as representative of different types of damage. The results obtained show that the effect of damage on TRP is significant, contrary to the results reported earlier.

59 citations

Journal ArticleDOI
TL;DR: In this article, a new composite thin wall beam element of arbitrary cross-section with open or closed contour is developed, which incorporates the effect of elastic coupling, restrained warping, transverse shear deformation associated with thin walled composite structures.

58 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide a state-of-the-art review of guided wave based structural health monitoring (SHM) and highlight the future directions and open areas of research in guided wave-based SHM.
Abstract: The paper provides a state of the art review of guided wave based structural health monitoring (SHM). First, the fundamental concepts of guided wave propagation and its implementation for SHM is explained. Following sections present the different modeling schemes adopted, developments in the area of transducers for generation, and sensing of wave, signal processing and imaging technique, statistical and machine learning schemes for feature extraction. Next, a section is presented on the recent advancements in nonlinear guided wave for SHM. This is followed by section on Rayleigh and SH waves. Next is a section on real-life implementation of guided wave for industrial problems. The paper, though briefly talks about the early development for completeness,. is primarily focussed on the recent progress made in the last decade. The paper ends by discussing and highlighting the future directions and open areas of research in guided wave based SHM.

664 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a systematic classification of representative volume element (RVE) generation techniques for heterogeneous materials, and divide heterogeneous solids into porous and non-porous media.

276 citations

Journal ArticleDOI
28 Jan 2019-Sensors
TL;DR: The requirements for practical implementation and use of structural health monitoring systems in aircraft application, state-of-the-art techniques for solving some practical issues, such as sensor network integration, scalability to large structures, reliability and effect of environmental conditions, robust damage detection and quantification are discussed.
Abstract: Structural health monitoring (SHM) is being widely evaluated by the aerospace industry as a method to improve the safety and reliability of aircraft structures and also reduce operational cost. Built-in sensor networks on an aircraft structure can provide crucial information regarding the condition, damage state and/or service environment of the structure. Among the various types of transducers used for SHM, piezoelectric materials are widely used because they can be employed as either actuators or sensors due to their piezoelectric effect and vice versa. This paper provides a brief overview of piezoelectric transducer-based SHM system technology developed for aircraft applications in the past two decades. The requirements for practical implementation and use of structural health monitoring systems in aircraft application are then introduced. State-of-the-art techniques for solving some practical issues, such as sensor network integration, scalability to large structures, reliability and effect of environmental conditions, robust damage detection and quantification are discussed. Development trend of SHM technology is also discussed.

255 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of the transverse shear deformation and rotary inertia are considered within the framework of Timoshenko beam theory and the surrounding elastic medium is described as the Winkler model characterized by the spring.

243 citations