Author
Nuno Vasconcelos
Other affiliations: Hewlett-Packard, University of California, Los Angeles, University of California, Berkeley ...read more
Bio: Nuno Vasconcelos is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Image retrieval & Object detection. The author has an hindex of 72, co-authored 286 publications receiving 21902 citations. Previous affiliations of Nuno Vasconcelos include Hewlett-Packard & University of California, Los Angeles.
Papers published on a yearly basis
Papers
More filters
18 Jun 2018
TL;DR: Cascade R-CNN as mentioned in this paper proposes a multi-stage object detection architecture, which consists of a sequence of detectors trained with increasing IoU thresholds, to be sequentially more selective against close false positives.
Abstract: In object detection, an intersection over union (IoU) threshold is required to define positives and negatives. An object detector, trained with low IoU threshold, e.g. 0.5, usually produces noisy detections. However, detection performance tends to degrade with increasing the IoU thresholds. Two main factors are responsible for this: 1) overfitting during training, due to exponentially vanishing positive samples, and 2) inference-time mismatch between the IoUs for which the detector is optimal and those of the input hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, is proposed to address these problems. It consists of a sequence of detectors trained with increasing IoU thresholds, to be sequentially more selective against close false positives. The detectors are trained stage by stage, leveraging the observation that the output of a detector is a good distribution for training the next higher quality detector. The resampling of progressively improved hypotheses guarantees that all detectors have a positive set of examples of equivalent size, reducing the overfitting problem. The same cascade procedure is applied at inference, enabling a closer match between the hypotheses and the detector quality of each stage. A simple implementation of the Cascade R-CNN is shown to surpass all single-model object detectors on the challenging COCO dataset. Experiments also show that the Cascade R-CNN is widely applicable across detector architectures, achieving consistent gains independently of the baseline detector strength. The code is available at https://github.com/zhaoweicai/cascade-rcnn.
3,663 citations
13 Jun 2010
TL;DR: A novel framework for anomaly detection in crowded scenes is presented and the proposed representation is shown to outperform various state of the art anomaly detection techniques.
Abstract: A novel framework for anomaly detection in crowded scenes is presented. Three properties are identified as important for the design of a localized video representation suitable for anomaly detection in such scenes: 1) joint modeling of appearance and dynamics of the scene, and the abilities to detect 2) temporal, and 3) spatial abnormalities. The model for normal crowd behavior is based on mixtures of dynamic textures and outliers under this model are labeled as anomalies. Temporal anomalies are equated to events of low-probability, while spatial anomalies are handled using discriminant saliency. An experimental evaluation is conducted with a new dataset of crowded scenes, composed of 100 video sequences and five well defined abnormality categories. The proposed representation is shown to outperform various state of the art anomaly detection techniques.
1,409 citations
08 Oct 2016
TL;DR: A unified deep neural network, denoted the multi-scale CNN (MS-CNN), is proposed for fast multi- scale object detection, which is learned end-to-end, by optimizing a multi-task loss.
Abstract: A unified deep neural network, denoted the multi-scale CNN (MS-CNN), is proposed for fast multi-scale object detection. The MS-CNN consists of a proposal sub-network and a detection sub-network. In the proposal sub-network, detection is performed at multiple output layers, so that receptive fields match objects of different scales. These complementary scale-specific detectors are combined to produce a strong multi-scale object detector. The unified network is learned end-to-end, by optimizing a multi-task loss. Feature upsampling by deconvolution is also explored, as an alternative to input upsampling, to reduce the memory and computation costs. State-of-the-art object detection performance, at up to 15 fps, is reported on datasets, such as KITTI and Caltech, containing a substantial number of small objects.
1,342 citations
25 Oct 2010
TL;DR: It is shown that accounting for cross-modal correlations and semantic abstraction both improve retrieval accuracy and are shown to outperform state-of-the-art image retrieval systems on a unimodal retrieval task.
Abstract: The problem of joint modeling the text and image components of multimedia documents is studied. The text component is represented as a sample from a hidden topic model, learned with latent Dirichlet allocation, and images are represented as bags of visual (SIFT) features. Two hypotheses are investigated: that 1) there is a benefit to explicitly modeling correlations between the two components, and 2) this modeling is more effective in feature spaces with higher levels of abstraction. Correlations between the two components are learned with canonical correlation analysis. Abstraction is achieved by representing text and images at a more general, semantic level. The two hypotheses are studied in the context of the task of cross-modal document retrieval. This includes retrieving the text that most closely matches a query image, or retrieving the images that most closely match a query text. It is shown that accounting for cross-modal correlations and semantic abstraction both improve retrieval accuracy. The cross-modal model is also shown to outperform state-of-the-art image retrieval systems on a unimodal retrieval task.
1,284 citations
23 Jun 2008
TL;DR: A privacy-preserving system for estimating the size of inhomogeneous crowds, composed of pedestrians that travel in different directions, without using explicit object segmentation or tracking is presented.
Abstract: We present a privacy-preserving system for estimating the size of inhomogeneous crowds, composed of pedestrians that travel in different directions, without using explicit object segmentation or tracking. First, the crowd is segmented into components of homogeneous motion, using the mixture of dynamic textures motion model. Second, a set of simple holistic features is extracted from each segmented region, and the correspondence between features and the number of people per segment is learned with Gaussian process regression. We validate both the crowd segmentation algorithm, and the crowd counting system, on a large pedestrian dataset (2000 frames of video, containing 49,885 total pedestrian instances). Finally, we present results of the system running on a full hour of video.
1,164 citations
Cited by
More filters
[...]
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …
33,785 citations
21 Jul 2017
TL;DR: This paper exploits the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost and achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles.
Abstract: Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But pyramid representations have been avoided in recent object detectors that are based on deep convolutional networks, partially because they are slow to compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A top-down architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using a basic Faster R-CNN system, our method achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 5 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.
16,727 citations
[...]
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).
13,246 citations
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.
10,141 citations
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or
7,563 citations