scispace - formally typeset
Search or ask a question

Showing papers by "Pallu Reddanna published in 2009"


Journal ArticleDOI
TL;DR: It is suggested that CA exerts anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages by inhibition of NF-kappaB activation and MAP kinase phosphorylation.

152 citations


Journal ArticleDOI
TL;DR: Chebulagic acid, a COX-2 and 5-LOX dual inhibitor isolated from the fruits of Terminalia chebula, induces apoptosis in COLO-205 cells.

141 citations


Journal ArticleDOI
TL;DR: The cardiac side effects of some of the coxibs have limited their application in treating various inflammatory disorders and warrant the development of COX-2 inhibitors without side effects, so a review will focus on the role of COx-2 in inflammation and cancer.
Abstract: Eicosanoids, a family of oxygenated metabolites of eicosapolyenoic fatty acids, such as arachidonic acid, formed via the lipoxygenase, cyclooxygenase (COX) and epoxygenase pathways, play an important role in the regulation of various pathophysiological processes, including inflammation and cancer. COX-2, the inducible isoform of COX, has emerged as the key enzyme regulating inflammation, and promises to play a considerable role in cancer. Although NSAIDs have been in use for centuries, the COX-2 selective inhibitors - coxibs - have emerged as potent anti-inflammatory drugs with fewer gastric side effects. As COX-2 plays a major role in neoplastic transformation and cancer growth, by downregulating apoptosis and promoting angiogenesis, invasion and metastasis, coxibs have a potential role in the prevention and treatment of cancer. Recent studies indicate their possible application in overcoming drug resistance by downregulating the expression of MDR-1. However, the cardiac side effects of some of the coxibs have limited their application in treating various inflammatory disorders and warrant the development of COX-2 inhibitors without side effects. This review will focus on the role of COX-2 in inflammation and cancer, with an emphasis on novel approaches to the development of COX-2 inhibitors without side effects.

79 citations


Journal ArticleDOI
TL;DR: It is suggested that 12‐R‐LOX and COX‐2 play a critical role in the regulation of growth in epidermoid carcinoma and that their inhibitors may be of potential therapeutic importance.
Abstract: Eicosanoids, the oxygenated metabolites of arachidonic acid (AA), mediate a variety of human diseases, such as cancer, inflammation and arthritis. To evaluate the role of eicosanoids in epidermoid carcinoma, the expression of AA metabolizing enzymes, such as lipoxygenases (LOXs) and cyclooxygenases (COXs), was analysed in a human epidermoid carcinoma cell line (A431). These studies revealed overexpression of 12-R-LOX and COX-2 in A431 cells. Baicalein (a 12-LOX inhibitor) and celecoxib (a COX-2 inhibitor) significantly reduced thymidine incorporation, whereas 12-(R)-HETE and 12-(S)-HETE (12-LOX metabolites) and PGE(2) (COX-2 metabolite) significantly enhanced thymidine incorporation, suggesting a role for these enzymes in the regulation of A431 cell proliferation. Further studies on the mechanism of cell death by baicalein and celecoxib revealed that the induction of apoptosis in A431 cells was associated with reduction in the Bcl-2/Bax ratio, release of cytochrome c, activation of caspase-3 and PARP cleavage. The apoptosis induced by baicalein and celecoxib was mediated by down regulation of ERK and PI3K-Akt pathways. Further, 12-(R)-HETE, 12-(S)-HETE and PGE(2) upregulated the p-ERK and p-Akt levels, suggesting the involvement of ERK and Akt pathways in the 12-LOX- and COX-2-mediated regulation of growth in A431 cells. Our findings suggest that 12-R-LOX and COX-2 play a critical role in the regulation of growth in epidermoid carcinoma and that their inhibitors may be of potential therapeutic importance.

39 citations


Journal ArticleDOI
TL;DR: Procumbentin and gossypin showed antinociceptive, and gOSSyp in showed antiinflammatory, activities.
Abstract: In the present study the antiinflammatory and antinociceptive activities of a few selected flavonoids were investigated. Procumbentin, gossypin, chrysin and methylhespiridin were studied for antiinflammatory and antinociceptive activities using in vitro enzymatic assays and in animal models utilizing acetic acid-induced writhing in mice and hind paw edema in rats. In vitro studies were performed using TMPD (NNN'N'-tetramethyl-p-phenylene diamine) and oxygraphic methods for COX-1 (cyclooxygenase-1), COX-2, 5-LOX (5-lipoxygenase) and 15-LOX. Gossypin and procumbentin showed COX-2 inhibitory activity and exhibited IC(50) (COX-2/COX-1) ratios of 0.14 and 0.11, respectively. None of the flavonoids tested in this study showed LOX inhibitory activity. Four groups were studied for each test compound following intraperitoneal (i.p.) administration of doses of 10, 30 and 100 mg/kg. Antiinflammatory activity was measured by the carrageenin-induced rat hind paw edema model and antinociceptive activity by acetic acid-induced writhing. Procumbentin and gossypin showed antinociceptive activity at the 100 mg/kg dose. Gossypin showed antiinflammatory activity at doses of 10, 30, 100 mg/kg. Procumbentin and gossypin exhibited COX-2 inhibitory activity when tested by in vitro methods. Procumbentin and gossypin showed antinociceptive, and gossypin showed antiinflammatory, activities.

23 citations


Journal ArticleDOI
TL;DR: The present study indicates that NADPH oxidase‐induced ROS generation activates the Fas‐mediated death pathway.
Abstract: The antiproliferative effects of 15-LOX (15-lipoxygenase) metabolites of arachidonic acid {(15S)-HPETE [(15S)-hydroperoxyeicosatetraenoic acid] and (15S)-HETE [(15S)-hydroxyeicosatetraenoic acid]} and the mechanism(s) involved were studied in the human T-cell leukaemia cell line Jurkat. (15S)-HPETE, the hydroperoxy metabolite of 15-LOX, inhibited the growth of Jurkat cells 3 h after exposure and with an IC(50) value of 10 microM. The hydroxy metabolite of 15-LOX, (15S)-HETE, on the other hand, inhibited the growth of Jurkat cells after 6 h of exposure and with an IC(50) value of 40 microM. The cells exposed to 10 microM (15S)-HPETE for 3 h or to 40 microM (15S)-HETE for 6 h showed increased expression of Fas ligand and FADD (Fas-associated death domain), caspase 8 activation, Bid (BH3-interacting domain death agonist) cleavage, decrease in mitochondrial membrane potential, cytochrome c release, caspase 3 activation, PARP-1 [poly(ADP-ribose) polymerase-1] cleavage and DNA fragmentation, suggesting the involvement of both extrinsic and intrinsic death pathways. Further studies on ROS (reactive oxygen species) generation revealed the involvement of NADPH oxidase. In conclusion, the present study indicates that NADPH oxidase-induced ROS generation activates the Fas-mediated death pathway.

17 citations


Journal ArticleDOI
TL;DR: The results show that the Gly441 and substrate orientation within the active site play an important role in stereo specificity of 12R-LOX.
Abstract: The present study is aimed at predicting human 12R-LOX structure by constructing a homology model. Based upon Blast results, rabbit reticulocyte 15-Lipoxygenase 1LOX (protein data bank) was considered as a template for homology modeling. The 3D model was generated with Modeler in InsightII and further refined using AMBER. Further to understand the relationship of protein structure with stereo specificity, a comparative analysis of 12R-LOX model was done with that of 12S-LOX homology model to identify differences in the binding site topology and interacting residues. The large insertion of 31-aa seen in 12R-LOX is located beyond the N-terminal barrel and is accommodated on the outside of the protein without disruption of the overall tertiary structure. The 31-aa region includes SH3 domain binding PXXP motif, seven prolines and five arginines. The docking of the substrate, arachidonic acid was also performed. Our results show that the Gly441 and substrate orientation within the active site play an important role in stereo specificity of 12R-LOX.

15 citations


Journal ArticleDOI
TL;DR: The results indicate that NSAIDs can induce apoptosis through a change in the colonic Na+/H+ exchange, intracellular pH, and an unfavorable Ca2+ homeostasis.
Abstract: Evidence suggests that nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cycloxygenase (COX) and production of the proinflammatory prostaglandin, PGE2, and thus prevent carcinogenesis in the colon. Indeed, one of the specific COX-2 inhibitors, celecoxib, had been accepted by the US FDA for the treatment of familial adenomatous polyposis. However, the molecular mechanism of such inhibition is not clear, although apoptosis appears to be the dominant antiproliferative end effect. The present study delineates the intracellular ionic milieu in the colonocytes that could generate strong apoptotic signals where DMH-induced carcinogenesis was studied in the initiation stage in rats and its regression with the COX inhibitors. While DMH treatment produced a significant elevation in the Na+/H+ exchanger activity and resultant proton efflux, this was reversed by the NSAIDs, particularly so with celecoxib and etoricoxib compared to aspirin. Similarly, the intracellular pH was changed, with more alkalosis noted in DMH, which was reversed by NSAIDs. Also, an intracellular Ca2+ build up was noted by Fura 2 AM, which was also supported by a reduced Ca2+ ATPase and an enhanced inward movement of Ca2+. Further, mitochondrial dysfunction-related cyt C release, increased DNA ladder formation, activation of caspase-3, and cleavage product of poly (ADP-ribose) polymerase (PARP) were not seen in DMH but well noted in NSAIDs. Our results indicate that NSAIDs can induce apoptosis through a change in the colonic Na+/H+ exchange, intracellular pH, and an unfavorable Ca2+ homeostasis.

7 citations


Journal ArticleDOI
TL;DR: The model showed Asp51, His92 and Ser268 in the active site as seen in most of the PC2 members, and the NEC-2 structure differs from that of furin at the catalytic pocket region with relevance to the amino acid composition which can be exploited for the design of specific inhibitors towards NEC-1.
Abstract: Prohormone or proprotein convertases (PC2) are members of the subtilisin family of serine proteases. They are involved in the activation of precursor molecules by endoproteolytic cleavage at basic amino acid residues within the general motif (K/R)-(X)n- (K/R)2, where n is 0, 2, 4 or 6 and X is usually not Cys. Among the members of this prohormone convertase family, Neuroendocrine Convertase-2 (NEC-2) is regarded as one of the important proteins involved in the maturation of many precursor proteins. Being widely distributed in the neuroendocrine cells, these proteins play a vital role in causing malignant gliomas. They can serve as important drug targets in the treatment of cancers. In the present study, a 3D model of NEC-2 was generated using homology modeling. The model was optimized by a brief energy minimization in CHARMM and dynamics simulation of 250ps in MOE. The validation results of PROCHECK and Profile 3D show that the stereochemical quality of the model is good. The Calpha backbone of the template and the target (NEC-2) when superimposed showed RMSD of 0.39A. The model showed Asp51, His92 and Ser268 in the active site as seen in most of the PC2 members. The NEC-2 structure differs from that of furin at the catalytic pocket region with relevance to the amino acid composition which can be exploited for the design of specific inhibitors towards NEC-2.

2 citations