scispace - formally typeset
Search or ask a question
JournalISSN: 0885-4513

Biotechnology and Applied Biochemistry 

Wiley-Blackwell
About: Biotechnology and Applied Biochemistry is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Medicine & Chemistry. It has an ISSN identifier of 0885-4513. Over the lifetime, 3167 publications have been published receiving 63665 citations.
Topics: Medicine, Chemistry, Immobilized enzyme, Biology, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: The molecular biology of amylases is discussed, describing structures, cloning, sequences, and protoplast fusion and mutagenesis, followed by sections on their production and finally the properties of various amylase.
Abstract: This review makes a comprehensive survey of microbial amylases, i.e. alpha-amylase, beta-amylase and glucoamylase. Amylases are among the most important enzymes and are of great significance in present-day biotechnology. Although they can be derived from several sources, such as plants, animals and micro-organisms, the enzymes from microbial sources generally meet industrial demands. Microbial amylases could be potentially useful in the pharmaceutical and fine-chemical industries if enzymes with suitable properties could be prepared. With the advent of new frontiers in biotechnology, the spectrum of amylase application has widened in many other fields, such as clinical, medicinal and analytical chemistries, as well as their widespread application in starch saccharification and in the textile, food, brewing and distilling industries. In this review, after a brief description of the sources of amylases, we discuss the molecular biology of amylases, describing structures, cloning, sequences, and protoplast fusion and mutagenesis. This is followed by sections on their production and finally the properties of various amylases.

988 citations

Journal ArticleDOI
TL;DR: Widening applications such as those in waste management and improved tanning techniques are other novel aspects of lipase utilization that are discussed in this review.
Abstract: In this review, a comprehensive and illustrious survey is made of the applied aspects of microbial lipases in modern biotechnological practices. Lipases are the most versatile biocatalyst and bring about a range of bioconversion reactions such as hydrolysis, interesterification, esterification, alcoholysis, acidolysis and aminolysis. After a brief description of the microbial sources of lipases, the pivotal role of lipases in the processes and products of the food and flavourings industry is illustrated. An illustration is presented of biomedical applications. The panorama of lipases in the manufacture of fine chemicals is depicted with special emphasis on pharmaceuticals, pesticides, cosmetics, biosensors and detergents. Widening applications such as those in waste management and improved tanning techniques are other novel aspects of lipase utilization that are discussed in this review.

638 citations

Journal ArticleDOI
TL;DR: It is suggested that the most critical issue in the use of a chromogenic protein assay for the characterization of a biopharmaceutical is the selection of a standard for the calibration of the assay; it is crucial that the standard be representative of the sample.
Abstract: There has been an increase in the number of colorimetric assay techniques for the determination of protein concentration over the past 20 years. This has resulted in a perceived increase in sensitivity and accuracy with the advent of new techniques. The present review considers these advances with emphasis on the potential use of such technologies in the assay of biopharmaceuticals. The techniques reviewed include Coomassie Blue G-250 dye binding (the Bradford assay), the Lowry assay, the bicinchoninic acid assay and the biuret assay. It is shown that each assay has advantages and disadvantages relative to sensitivity, ease of performance, acceptance in the literature, accuracy and reproducibility/coefficient of variation/laboratory-to-laboratory variation. A comparison of the use of several assays with the same sample population is presented. It is suggested that the most critical issue in the use of a chromogenic protein assay for the characterization of a biopharmaceutical is the selection of a standard for the calibration of the assay; it is crucial that the standard be representative of the sample. If it is not possible to match the standard with the sample from the perspective of protein composition, then it is preferable to use an assay that is not sensitive to the composition of the protein such as a micro-Kjeldahl technique, quantitative amino acid analysis or the biuret assay. In a complex mixture it might be inappropriate to focus on a general method of protein determination and much more informative to use specific methods relating to the protein(s) of particular interest, using either specific assays or antibody-based methods. The key point is that whatever method is adopted as the 'gold standard' for a given protein, this method needs to be used routinely for calibration.

434 citations

Journal ArticleDOI
TL;DR: Methodologies of development of CATE modelling from high‐resolution non‐invasive imaging and image‐based three‐dimensional reconstruction, and various reconstructive techniques for CAD‐based tissue modelling generation will be described.
Abstract: Advances in computer-aided technology and its application with biology, engineering and information science to tissue engineering have evolved a new field of computer-aided tissue engineering (CATE). This emerging field encompasses computer-aided design (CAD), image processing, manufacturing and solid free-form fabrication (SFF) for modelling, designing, simulation and manufacturing of biological tissue and organ substitutes. The present Review describes some salient advances in this field, particularly in computer-aided tissue modeling, computer-aided tissue informatics and computer-aided tissue scaffold design and fabrication. Methodologies of development of CATE modelling from high-resolution non-invasive imaging and image-based three-dimensional reconstruction, and various reconstructive techniques for CAD-based tissue modelling generation will be described. The latest development in SFF to tissue engineering and a framework of bio-blueprint modelling for three-dimensional cell and organ printing will also be introduced.

331 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202357
2022144
2021289
2020135
2019120
201896