scispace - formally typeset
Search or ask a question

Showing papers by "Patrick J. Kelly published in 2013"


Journal ArticleDOI
TL;DR: Examination of the effect of metformin use on pathologic complete response (pCR) rates and outcomes in rectal cancer found that met formin use is associated with significantly higher pCR rates as well as improved survival.
Abstract: Locally advanced rectal cancer is commonly treated with chemoradiation prior to total mesorectal excision (TME). Studies suggest that metformin may be an effective chemopreventive agent in this disease as well as a possible adjunct to current therapy. In this study, we examined the effect of metformin use on pathologic complete response (pCR) rates and outcomes in rectal cancer. The charts of 482 patients with locally advanced rectal adenocarcinoma treated from 1996 to 2009 with chemoradiation and TME were reviewed. Median radiation dose was 50.4 Gy (range 19.8–63). Nearly, all patients were treated with concurrent 5-fluorouracil-based chemotherapy (98%) followed by adjuvant chemotherapy (81.3%). Patients were categorized as nondiabetic (422), diabetic not taking metformin (40), or diabetic taking metformin (20). No significant differences between groups were found in clinical tumor classification, nodal classification, tumor distance from the anal verge or circumferential extent, pretreatment carcinoembryonic antigen level, or pathologic differentiation. pCR rates were 16.6% for nondiabetics, 7.5% for diabetics not using metformin, and 35% for diabetics taking metformin, with metformin users having significantly higher pCR rates than either nondiabetics (P = 0.03) or diabetics not using metformin (P = 0.007). Metformin use was significantly associated with pCR rate on univariate (P = 0.05) and multivariate (P = 0.01) analyses. Furthermore, patients taking metformin had significantly increased disease-free (P = 0.013) and overall survival (P = 0.008) compared with other diabetic patients. Metformin use is associated with significantly higher pCR rates as well as improved survival. These promising data warrant further prospective study.

79 citations


Journal ArticleDOI
TL;DR: The findings suggest that circumferential margins around the vessels do not accurately define the nodal region at risk, and the anatomical extent of the nodsal basin should be contoured on each axial image to provide optimal coverage of the para-aortic nodal compartment.
Abstract: Purpose Conformal treatment of para-aortic lymph nodes (PAN) in cervical cancer allows dose escalation and reduces normal tissue toxicity. Currently, data documenting the precise location of involved PAN are lacking. We define the spatial distribution of this high-risk nodal volume by analyzing fluorodeoxyglucose (FDG)-avid lymph nodes (LNs) on positron emission tomography/computed tomography (PET/CT) scans in patients with cervical cancer. Methods and Materials We identified 72 PANs on pretreatment PET/CT of 30 patients with newly diagnosed stage IB-IVA cervical cancer treated with definitive chemoradiation. LNs were classified as left-lateral para-aortic (LPA), aortocaval (AC), or right paracaval (RPC). Distances from the LN center to the closest vessel and adjacent vertebral body were calculated. Using deformable image registration, nodes were mapped to a template computed tomogram to provide a visual impression of nodal frequencies and anatomic distribution. Results We identified 72 PET-positive para-aortic lymph nodes (37 LPA, 32 AC, 3 RPC). All RPC lymph nodes were in the inferior third of the para-aortic region. The mean distance from aorta for all lymph nodes was 8.3 mm (range, 3-17 mm), and from the inferior vena cava was 5.6 mm (range, 2-10 mm). Of the 72 lymph nodes, 60% were in the inferior third, 36% were in the middle third, and 4% were in the upper third of the para-aortic region. In all, 29 of 30 patients also had FDG-avid pelvic lymph nodes. Conclusions A total of 96% of PET positive nodes were adjacent to the aorta; PET positive nodes to the right of the IVC were rare and were all located distally, within 3 cm of the aortic bifurcation. Our findings suggest that circumferential margins around the vessels do not accurately define the nodal region at risk. Instead, the anatomical extent of the nodal basin should be contoured on each axial image to provide optimal coverage of the para-aortic nodal compartment.

35 citations


Journal ArticleDOI
TL;DR: The findings clarify nodal volumes at risk and can be used to improve target definition in conformal radiation therapy for cervical cancer.
Abstract: Purpose Current information about the anatomic distribution of lymph node (LN) metastases from cervical cancer is not precise enough for optimal treatment planning for highly conformal radiation therapy. To accurately define the anatomic distribution of these LN metastases, we mapped [ 18 F] fluorodeoxyglucose positron emission tomography (FDG PET)-positive LNs from 50 women with cervical cancer. Methods and Materials Records of patients with cervical cancer treated from 2006 to 2010 who had pretreatment PET/computed tomography (CT) scans available were retrospectively reviewed. Forty-one consecutive patients (group 1) with FDG-avid LNs were identified; because there were few positive paraortic LNs in group 1, 9 additional patients (group 2) with positive paraortic LNs were added. Involved LNs were contoured on individual PET/CT images, mapped to a template CT scan by deformable image registration, and edited as necessary by a diagnostic radiologist and radiation oncologists to most accurately represent the location on the original PET/CT scan. Results We identified 190 FDG-avid LNs, 122 in group 1 and 68 in group 2. The highest concentrations of FDG-avid nodes were in the external iliac, common iliac, and paraortic regions. The anatomic distribution of the 122 positive LNs in group 1 was as follows: external iliac, 78 (63.9%); common iliac, 21 (17.2%); paraortic, 9 (7.4%); internal iliac, 8 (6.6%); presacral, 2 (1.6%); perirectal, 2 (1.6%); and medial inguinal, 2 (1.6%). Twelve pelvic LNs were not fully covered when the clinical target volume was defined according to Radiation Therapy Oncology Group guidelines for intensity modulated radiation therapy for cervical cancer. Conclusions Our findings clarify nodal volumes at risk and can be used to improve target definition in conformal radiation therapy for cervical cancer. Our findings suggest several areas that may not be adequately covered by contours described in available atlases.

23 citations