scispace - formally typeset
Search or ask a question

Showing papers by "Philip L. Lorenzi published in 2006"


Journal ArticleDOI
TL;DR: Overall, this pharmacogenomic/pharmacoproteomic study suggests the use of l-ASP for treatment of a subset of ovarian cancers (and perhaps other tumor types), with ASNS as a biomarker for patient selection.
Abstract: L-Asparaginase (l-ASP), a bacterial enzyme used since the 1970s to treat acute lymphoblastic leukemia, selectively starves cells that cannot synthesize sufficient asparagine for their own needs. Molecular profiling of the NCI-60 cancer cell lines using five different microarray platforms showed strong negative correlations of asparagine synthetase (ASNS) expression and DNA copy number with sensitivity to l-ASP in the leukemia and ovarian cancer cell subsets. To assess whether the ovarian relationship is causal, we used RNA interference to silence ASNS in three ovarian lines and observed 4- to 5-fold potentiation of sensitivity to l-ASP with two of the lines. For OVCAR-8, the line that expresses the least ASNS, the potentiation was >500-fold. Significantly, that potentiation was >700-fold in the multidrug-resistant derivative OVCAR-8/ADR, showing that the causal relationship between ASNS expression and l-ASP activity survives development of classical multidrug resistance. Tissue microarrays confirmed low ASNS expression in a subset of clinical ovarian cancers as well as other tumor types. Overall, this pharmacogenomic/pharmacoproteomic study suggests the use of l-ASP for treatment of a subset of ovarian cancers (and perhaps other tumor types), with ASNS as a biomarker for patient selection.

98 citations


Journal ArticleDOI
TL;DR: Initial hydrolysis rates are relatively low for prodrugs with isoleucyl, aspartyl, and lysyl promoieties for both enzymes compared with those with phenylalanyl, valyl, prolyl, and leucyl progroups, suggesting prolonged systemic disposition of the nucleoside analogs for improved therapeutic action.
Abstract: Carboxylesterases are among the best characterized prodrug-hydrolyzing enzymes involved in the activation of several therapeutic carbamate and ester prodrugs. The broad specificity of these enzymes makes them amenable for designing prodrugs. Porcine liver carboxylesterase 1 specificity for amino acid esters of three nucleoside analogs [floxuridine, gemcitabine, and 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl) benzimidazole] was evaluated to assess optimal structural preferences for prodrug design. The amino acid promoiety and the esterification site influenced carboxylesterase hydrolysis rates up to 1164-fold and the binding affinity up to 26-fold. Carboxylesterase (CES) 1 exhibited high-catalytic efficiency hydrolyzing prodrugs containing a phenylalanyl moiety but was over 100-fold less efficient with valyl or isoleucyl prodrugs, regardless of the nucleoside or esterification site. CES1 catalytic efficiency was 2-fold higher with 5' phenylalanyl monoesters than the corresponding 3' esters of floxuridine. This preference was reversed with phenylalanyl gemcitabine prodrugs, evident from a 2-fold preference for 3' monoesters over 5' esters. The newly characterized esterase valacyclovirase was several hundred-fold more efficient (up to 19,000-fold) than carboxylesterase in hydrolyzing amino acid esters but similar in apparent binding affinity. The specific activities of the two enzymes with several amino acid ester prodrugs clearly suggest that initial hydrolysis rates are relatively low for prodrugs with isoleucyl, aspartyl, and lysyl promoieties for both enzymes compared with those with phenylalanyl, valyl, prolyl, and leucyl progroups. The low relative hydrolysis rates of isoleucyl, aspartyl, and lysyl prodrugs may facilitate prolonged systemic disposition of the nucleoside analogs for improved therapeutic action.

48 citations


Journal ArticleDOI
TL;DR: The identification of two enzymes, 8-oxoguanine DNA glycosylase (OGG1) and N-methylpurine DNA Glycosylases (MPG), that catalyze N-glycosidic bond cleavage of BDCRB and its 2-chloro homolog, 2,5,6-trichloro-1-(β-d-ribofuranosyl)benzimidazole, but not maribavir are
Abstract: The rapid in vivo degradation of the potent human cytomegalovirus inhibitor 2-bromo-5,6-dichloro-1-(?-d-ribofuranosyl)benzimidazole (BDCRB) compared with a structural l-analog, maribavir (5,6-dichloro-2-(isopropylamino)-1-?-l-ribofuranosyl-1H-benzimidazole), has been attributed to selective glycosidic bond cleavage. An enzyme responsible for this selective BDCRB degradation, however, has not been identified. Here, we report the identification of two enzymes, 8-oxoguanine DNA glycosylase (OGG1) and N-methylpurine DNA glycosylase (MPG), that catalyze N-glycosidic bond cleavage of BDCRB and its 2-chloro homolog, 2,5,6-trichloro-1-(?-d-ribofuranosyl)benzimidazole, but not maribavir. To our knowledge, this is the first demonstration that free nucleosides are substrates of OGG1 and MPG. To understand how these enzymes might process BDCRB, docking and molecular dynamics simulations were performed with the native human OGG1 crystal coordinates. These studies showed that OGG1 was not able to bind a negative control, guanosine, yet BDCRB and maribavir were stabilized through interactions with various binding site residues, including Phe319, His270, Ser320, and Asn149. Only BDCRB, however, achieved orientations whereby its anomeric carbon, C1?, could undergo nucleophilic attack by the putative catalytic residue, Lys249. Thus, in silico observations were in perfect agreement with experimental observations. These findings implicate DNA glycosylases in drug metabolism.

17 citations