scispace - formally typeset
Search or ask a question

Showing papers by "Praneeth Netrapalli published in 2018"


Journal Article
TL;DR: A novel analysis is developed in bounding these operators to characterize the excess risk of communication efficient parallelization schemes such as model-averaging/parameter mixing methods, which are of broader interest in analyzing computational aspects of stochastic approximation.
Abstract: This work characterizes the benefits of averaging schemes widely used in conjunction with stochastic gradient descent (SGD). In particular, this work provides a sharp analysis of: (1) mini-batching, a method of averaging many samples of a stochastic gradient to both reduce the variance of the stochastic gradient estimate and for parallelizing SGD and (2) tail-averaging, a method involving averaging the final few iterates of SGD to decrease the variance in SGD's final iterate. This work presents non-asymptotic excess risk bounds for these schemes for the stochastic approximation problem of least squares regression. Furthermore, this work establishes a precise problem-dependent extent to which mini-batch SGD yields provable near-linear parallelization speedups over SGD with batch size one. This allows for understanding learning rate versus batch size tradeoffs for the final iterate of an SGD method. These results are then utilized in providing a highly parallelizable SGD method that obtains the minimax risk with nearly the same number of serial updates as batch gradient descent, improving significantly over existing SGD methods. A non-asymptotic analysis of communication efficient parallelization schemes such as model-averaging/parameter mixing methods is then provided. Finally, this work sheds light on some fundamental differences in SGD's behavior when dealing with agnostic noise in the (non-realizable) least squares regression problem. In particular, the work shows that the stepsizes that ensure minimax risk for the agnostic case must be a function of the noise properties. This paper builds on the operator view of analyzing SGD methods, introduced by Defossez and Bach (2015), followed by developing a novel analysis in bounding these operators to characterize the excess risk. These techniques are of broader interest in analyzing computational aspects of stochastic approximation.

120 citations


Proceedings Article
03 Jul 2018
TL;DR: In this article, a simple variant of Nesterov's accelerated gradient descent (AGD) was shown to achieve faster convergence rate than GD in the nonconvex setting.
Abstract: Nesterov's accelerated gradient descent (AGD), an instance of the general family of "momentum methods", provably achieves faster convergence rate than gradient descent (GD) in the convex setting. However, whether these methods are superior to GD in the nonconvex setting remains open. This paper studies a simple variant of AGD, and shows that it escapes saddle points and finds a second-order stationary point in $\tilde{O}(1/\epsilon^{7/4})$ iterations, faster than the $\tilde{O}(1/\epsilon^{2})$ iterations required by GD. To the best of our knowledge, this is the first Hessian-free algorithm to find a second-order stationary point faster than GD, and also the first single-loop algorithm with a faster rate than GD even in the setting of finding a first-order stationary point. Our analysis is based on two key ideas: (1) the use of a simple Hamiltonian function, inspired by a continuous-time perspective, which AGD monotonically decreases per step even for nonconvex functions, and (2) a novel framework called improve or localize, which is useful for tracking the long-term behavior of gradient-based optimization algorithms. We believe that these techniques may deepen our understanding of both acceleration algorithms and nonconvex optimization.

114 citations


Proceedings ArticleDOI
15 Feb 2018
TL;DR: The results suggest (along with empirical evidence) that HB or NAG's practical performance gains are a by-product of minibatching, and provide a viable (and provable) alternative, which significantly improves over HB, NAG, and SGD's performance.
Abstract: Momentum based stochastic gradient methods such as heavy ball (HB) and Nesterov's accelerated gradient descent (NAG) method are widely used in practice for training deep networks and other supervised learning models, as they often provide significant improvements over stochastic gradient descent (SGD). In general, “fast gradient” methods have provable improvements over gradient descent only for the deterministic case, where the gradients are exact. In the stochastic case, the popular explanations for their wide applicability is that when these fast gradient methods are applied in the stochastic case, they partially mimic their exact gradient counterparts, resulting in some practical gain. This work provides a counterpoint to this belief by proving that there are simple problem instances where these methods cannot outperform SGD despite the best setting of its parameters. These negative problem instances are, in an informal sense, generic; they do not look like carefully constructed pathological instances. These results suggest (along with empirical evidence) that HB or NAG's practical performance gains are a by-product of minibatching. Furthermore, this work provides a viable (and provable) alternative, which, on the same set of problem instances, significantly improves over HB, NAG, and SGD's performance. This algorithm, denoted as ASGD, is a simple to implement stochastic algorithm, based on a relatively less popular version of Nesterov's AGD. Extensive empirical results in this paper show that ASGD has performance gains over HB, NAG, and SGD.

64 citations


Proceedings Article
03 Jul 2018
TL;DR: In this article, the authors show that acceleration can be made robust to statistical errors by making it faster than stochastic gradient descent for the least square regression problem, and they also show that this can be achieved faster than gradient descent in general convex and nonconvex optimization problems.
Abstract: There is widespread sentiment that it is not possible to effectively utilize fast gradient methods (e.g. Nesterov's acceleration, conjugate gradient, heavy ball) for the purposes of stochastic optimization due to their instability and error accumulation, a notion made precise in d'Aspremont 2008 and Devolder, Glineur, and Nesterov 2014. This work considers these issues for the special case of stochastic approximation for the least squares regression problem, and our main result refutes the conventional wisdom by showing that acceleration can be made robust to statistical errors. In particular, this work introduces an accelerated stochastic gradient method that provably achieves the minimax optimal statistical risk faster than stochastic gradient descent. Critical to the analysis is a sharp characterization of accelerated stochastic gradient descent as a stochastic process. We hope this characterization gives insights towards the broader question of designing simple and effective accelerated stochastic methods for more general convex and non-convex optimization problems.

53 citations


Posted Content
TL;DR: It is shown that all approximate local optima are global optima for the penalty formulation of appropriately rank-constrained SDPs as long as the number of constraints scales sub-quadratically with the desired rank of the optimal solution.
Abstract: Semidefinite programs (SDP) are important in learning and combinatorial optimization with numerous applications. In pursuit of low-rank solutions and low complexity algorithms, we consider the Burer--Monteiro factorization approach for solving SDPs. We show that all approximate local optima are global optima for the penalty formulation of appropriately rank-constrained SDPs as long as the number of constraints scales sub-quadratically with the desired rank of the optimal solution. Our result is based on a simple penalty function formulation of the rank-constrained SDP along with a smoothed analysis to avoid worst-case cost matrices. We particularize our results to two applications, namely, Max-Cut and matrix completion.

33 citations


Proceedings ArticleDOI
01 Jan 2018
TL;DR: In this paper, the authors show that the complexity of spectrum approximation is inherently tied to fast matrix multiplication in the small \epsilon regime, showing that achieving milder dependencies in their algorithms would imply triangle detection algorithms for general graphs running in faster than state of the art matrix multiplication time.
Abstract: Understanding the singular value spectrum of an n x n matrix A is a fundamental task in countless numerical computation and data analysis applications. In matrix multiplication time, it is possible to perform a full SVD of A and directly compute the singular values \sigma_1,...,\sigma_n. However, little is known about algorithms that break this runtime barrier. Using tools from stochastic trace estimation, polynomial approximation, and fast linear system solvers, we show how to efficiently isolate different ranges of A's spectrum and approximate the number of singular values in these ranges. We thus effectively compute an approximate histogram of the spectrum, which can stand in for the true singular values in many applications. We use our histogram primitive to give the first algorithms for approximating a wide class of symmetric matrix norms and spectral sums faster than the best known runtime for matrix multiplication. For example, we show how to obtain a (1 + \epsilon) approximation to the Schatten 1-norm (i.e. the nuclear or trace norm) in just ~ O((nnz(A)n^{1/3} + n^2)\epsilon^{-3}) time for A with uniform row sparsity or \tilde O(n^{2.18} \epsilon^{-3}) time for dense matrices. The runtime scales smoothly for general Schatten-p norms, notably becoming \tilde O (p nnz(A) \epsilon^{-3}) for any real p >= 2. At the same time, we show that the complexity of spectrum approximation is inherently tied to fast matrix multiplication in the small \epsilon regime. We use fine-grained complexity to give conditional lower bounds for spectrum approximation, showing that achieving milder \epsilon dependencies in our algorithms would imply triangle detection algorithms for general graphs running in faster than state of the art matrix multiplication time. This further implies, through a reduction of (Williams & William, 2010), that highly accurate spectrum approximation algorithms running in subcubic time can be used to give subcubic time matrix multiplication. As an application of our bounds, we show that precisely computing all effective resistances in a graph in less than matrix multiplication time is likely difficult, barring a major algorithmic breakthrough.

27 citations


Posted Content
TL;DR: In this paper, the authors show that there exist simple problem instances where these methods cannot outperform SGD despite the best setting of its parameters, and that these negative problem instances are, in an informal sense, generic; they do not look like carefully constructed pathological instances.
Abstract: Momentum based stochastic gradient methods such as heavy ball (HB) and Nesterov's accelerated gradient descent (NAG) method are widely used in practice for training deep networks and other supervised learning models, as they often provide significant improvements over stochastic gradient descent (SGD). Rigorously speaking, "fast gradient" methods have provable improvements over gradient descent only for the deterministic case, where the gradients are exact. In the stochastic case, the popular explanations for their wide applicability is that when these fast gradient methods are applied in the stochastic case, they partially mimic their exact gradient counterparts, resulting in some practical gain. This work provides a counterpoint to this belief by proving that there exist simple problem instances where these methods cannot outperform SGD despite the best setting of its parameters. These negative problem instances are, in an informal sense, generic; they do not look like carefully constructed pathological instances. These results suggest (along with empirical evidence) that HB or NAG's practical performance gains are a by-product of mini-batching. Furthermore, this work provides a viable (and provable) alternative, which, on the same set of problem instances, significantly improves over HB, NAG, and SGD's performance. This algorithm, referred to as Accelerated Stochastic Gradient Descent (ASGD), is a simple to implement stochastic algorithm, based on a relatively less popular variant of Nesterov's Acceleration. Extensive empirical results in this paper show that ASGD has performance gains over HB, NAG, and SGD.

25 citations



Proceedings Article
03 Dec 2018
TL;DR: These support recovery and generalization bounds are the first such matching upper and lower bounds for sparse regression algorithm under the RSC assumption, up to logarithmic factors.
Abstract: This paper studies the problem of sparse regression where the goal is to learn a sparse vector that best optimizes a given objective function. Under the assumption that the objective function satisfies restricted strong convexity (RSC), we analyze orthogonal matching pursuit (OMP), a greedy algorithm that is used heavily in applications, and obtain support recovery result as well as a tight generalization error bound for OMP. Furthermore, we obtain lower bounds for OMP, showing that both our results on support recovery and generalization error are tight up to logarithmic factors. To the best of our knowledge, these support recovery and generalization bounds are the first such matching upper and lower bounds (up to logarithmic factors) for {\em any} sparse regression algorithm under the RSC assumption.

9 citations


Proceedings Article
03 Jul 2018
TL;DR: In this paper, the Burer-Monteiro factorization approach was applied to solve rank-constrained SDPs and it was shown that all approximate local optima are global optima for the penalty formulation as long as the number of constraints scales sub-quadratically with the desired rank.
Abstract: Semidefinite programs (SDP) are important in learning and combinatorial optimization with numerous applications. In pursuit of low-rank solutions and low complexity algorithms, we consider the Burer--Monteiro factorization approach for solving SDPs. We show that all approximate local optima are global optima for the penalty formulation of appropriately rank-constrained SDPs as long as the number of constraints scales sub-quadratically with the desired rank of the optimal solution. Our result is based on a simple penalty function formulation of the rank-constrained SDP along with a smoothed analysis to avoid worst-case cost matrices. We particularize our results to two applications, namely, Max-Cut and matrix completion.

6 citations



15 Feb 2018
TL;DR: The results herein suggest that there is a strong correlation between small generalization errors and high learnability, and there exist significant qualitative differences in shallow networks as compared to popular deep networks.
Abstract: This paper explores the simplicity of learned neural networks under various settings: learned on real vs random data, varying size/architecture and using large minibatch size vs small minibatch size. The notion of simplicity used here is that of learnability i.e., how accurately can the prediction function of a neural network be learned from labeled samples from it. While learnability is different from (in fact often higher than) test accuracy, the results herein suggest that there is a strong correlation between small generalization errors and high learnability. This work also shows that there exist significant qualitative differences in shallow networks as compared to popular deep networks. More broadly, this paper extends in a new direction, previous work on understanding the properties of learned neural networks. Our hope is that such an empirical study of understanding learned neural networks might shed light on the right assumptions that can be made for a theoretical study of deep learning.