scispace - formally typeset
Search or ask a question

Showing papers by "René L. Warren published in 1997"


Journal ArticleDOI
TL;DR: The tissue‐restricted GATA‐4 transcription factor and Nkx2‐5 homeodomain protein are two early markers of precardiac cells and the GATA/Nkx partnership may represent a paradigm for transcription factor interaction during organogenesis.
Abstract: The tissue-restricted GATA-4 transcription factor and Nkx2-5 homeodomain protein are two early markers of precardiac cells. Both are essential for heart formation, but neither can initiate cardiogenesis. Overexpression of GATA-4 or Nkx2-5 enhances cardiac development in committed precursors, suggesting each interacts with a cardiac cofactor. We tested whether GATA-4 and Nkx2-5 are cofactors for each other by using transcription and binding assays with the cardiac atrial natriuretic factor (ANF) promoter_the only known target for Nkx2-5. Co-expression of GATA-4 and Nkx2-5 resulted in synergistic activation of the ANF promoter in heterologous cells. The synergy involves physical Nkx2-5-GATA-4 interaction, seen in vitro and in vivo, which maps to the C-terminal zinc finger of GATA-4 and a C-terminus extension; similarly, a C-terminally extended homeodomain of Nkx2-5 is required for GATA-4 binding. Structure/function studies suggest that binding of GATA-4 to the C-terminus autorepressive domain of Nkx2-5 may induce a conformational change that unmasks Nkx2-5 activation domains. GATA-6 cannot substitute for GATA-4 for interaction with Nkx2-5. This interaction may impart functional specificity to GATA factors and provide cooperative crosstalk between two pathways critical for early cardiogenesis. Given the co-expression of GATA proteins and NK2 class members in other tissues, the GATA/Nkx partnership may represent a paradigm for transcription factor interaction during organogenesis.

681 citations