scispace - formally typeset
Search or ask a question

Showing papers by "Richard Dekany published in 2002"


01 Jun 2002
TL;DR: The California Extremely Large Telescope (CELT) as discussed by the authors is the largest telescope in the world with a diameter of 30 meters, the largest size that can be built with acceptable risk.
Abstract: Following great success in the creation of the Keck Observatory, scientists at the California Institute of Technology and the University of California have begun to explore the scientific and technical prospects for a much larger telescope. The Keck telescopes will remain the largest telescopes in the world for a number of years, with many decades of forefront research ahead after that. Though these telescopes have produced dramatic discoveries, it is already clear that even larger telescopes must be built if we are to address some of the most profound questions about our universe. The time required to build a larger telescope is approximately ten years, and the California community is presently well-positioned to begin its design and construction. The same scientists who conceived, led the design, and guided the construction of the Keck Observatory have been intensely engaged in a study of the prospects for an extremely large telescope. Building on our experience with the Keck Observatory, we have concluded that the large telescope is feasible and is within the bounds set by present-day technology. Our reference telescope has a diameter of 30 meters, the largest size we believe can be built with acceptable risk. The project is currently designated the California Extremely Large Telescope (CELT).

10 citations


Proceedings ArticleDOI
TL;DR: The intention here is to present the case for the economic advantage of silicon as a highly functional optical substrate that can be fabricated using unparalleled industry experience with precision process control in the fabrication of ultralightweight space telescopes.
Abstract: We propose thin silicon wafers as the building blocks of highly segmented space telescope primary mirrors. Using embedded MEMS actuators operating at high bandwidth control, this technology can achieve diffraction-limited image quality in the 3-300 micron wavelength range. The use of silicon wafers as cryogenic mirror segments is carried forward considering a point design of a future FAIR-class NASA ORIGINS mission. We recognize four major economic factors that justify a massive paradigm shift in the fabrication of ultralightweight space telescopes: The precise process control and repeatability of silicon wafer manufacturing dramatically reduces the huge labor investment in mirror figuring experienced with Hubble Space Telescope. Once developed, the incremental cost of additional space telescopes based upon proven silicon manufacturing techniques can be very small. We estimate the marginal cost of a 30m mirror when deploying a constellation can be as low as $36 million (Year 2002 dollars). Federal R&D funding in the area of microelectromechanical devices and advanced 3-D silicon processing is certain to have far greater economic return than similar investments in other technologies, such as optical membrane technology. The $300B per year silicon processing industry will continue to drive increased MEMS functionality, higher product yields, and lower cost. These advances will continue for decades. The intention here is to present the case for the economic advantage of silicon as a highly functional optical substrate that can be fabricated using unparalleled industry experience with precision process control. We maintain that many architectures superior to the ASSiST concept presented here are possible, and hope that this effort prompts future thinking of the silicon wafer telescope paradigm

8 citations


Proceedings ArticleDOI
TL;DR: In this article, a high-order adaptive optics system was proposed for ground-based surveys that can deliver a wide field-of-view and nearly diffraction-limited image quality.
Abstract: We describe a new technique for ground-based telescopic surveys that can deliver a wide field of view and nearly diffraction-limited image quality. We discuss a very low cost, yet sensitive and efficient, concept to perform science previously considered from space. For ground-based telescopes with small D/r 0 (aperture over turbulence cell diameter) a significant improvement in point source sensitivity can be achieved with tip-tilt correction only. However, the solid angle over which image motion is constant is typically less than an arcminute. To achieve tip-tilt correction over a larger field we propose to use a high order adaptive optics system where one pupil sub-aperture now corresponds to one isokinetic patch. The high order deformable mirror is conjugated to an atmospheric height where the tip-tilt "beams" separate from each other while the overall tip-tilt can be taken out with a tip-tilt secondary mirror conjugated to low height. One source per square arcminute with V ≤ 18 m is required for the determination of the image motion, allowing a sky coverage of more than 50%. The improvement over seeing limited observations is maximal at D/r 0 ≈ 4 with a S/N improvement of a factor of four. An inexpensive system with 500 actuators can correct a field of view of 0.4 × 0.4 deg 2 . It is thus well-suited for searches of point sources, e.g. high-z SN Ia or other transient phenomena.

2 citations


Proceedings ArticleDOI
30 Jul 2002
TL;DR: In this article, the authors describe the development of a C++ class library for the simulation of adaptive optics systems, which includes functionality to simulate the propagation of electromagnetic waves through a randomly generated turbulent atmosphere and through an adaptive optical system.
Abstract: In this paper we describe the development of a C++ class library for the simulation of adaptive optics systems. This library includes functionality to simulate the propagation of electromagnetic waves through a randomly generated turbulent atmosphere and through an adaptive optical system. It includes support for extended emitters and laser guide stars, and for different types of wavefront sensors and reconstructors. The library also aims to support parallelization of simulations across symmetric multiprocessor and cluster supercomputers.