Author

# Rina Dechter

Other affiliations: University of Texas at Dallas, University of California, Berkeley, Technion – Israel Institute of Technology ...read more

Bio: Rina Dechter is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Graphical model & Search algorithm. The author has an hindex of 58, co-authored 288 publications receiving 16938 citations. Previous affiliations of Rina Dechter include University of Texas at Dallas & University of California, Berkeley.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: It is shown that the STP, which subsumes the major part of Vilain and Kautz's point algebra, can be solved in polynomial time and the applicability of path consistency algorithms as preprocessing of temporal problems is studied, to demonstrate their termination and bound their complexities.

Abstract: This paper extends network-based methods of constraint satisfaction to include continuous variables, thus providing a framework for processing temporal constraints. In this framework, called temporal constraint satisfaction problem (TCSP), variables represent time points and temporal information is represented by a set of unary and binary constraints, each specifying a set of permitted intervals. The unique feature of this framework lies in permitting the processing of metric information, namely, assessments of time differences between events. We present algorithms for performing the following reasoning tasks: finding all feasible times that a given event can occur, finding all possible relationships between two given events, and generating one or more scenarios consistent with the information provided. We distinguish between simple temporal problems (STPs) and general temporal problems, the former admitting at most one interval constraint on any pair of time points. We show that the STP, which subsumes the major part of Vilain and Kautz's point algebra, can be solved in polynomial time. For general TCSPs, we present a decomposition scheme that performs the three reasoning tasks considered, and introduce a variety of techniques for improving its efficiency. We also study the applicability of path consistency algorithms as preprocessing of temporal problems, demonstrate their termination and bound their complexities.

1,989 citations

•

01 Jan 2003

TL;DR: Rina Dechter synthesizes three decades of researchers work on constraint processing in AI, databases and programming languages, operations research, management science, and applied mathematics to provide the first comprehensive examination of the theory that underlies constraint processing algorithms.

Abstract: Constraint satisfaction is a simple but powerful tool. Constraints identify the impossible and reduce the realm of possibilities to effectively focus on the possible, allowing for a natural declarative formulation of what must be satisfied, without expressing how. The field of constraint reasoning has matured over the last three decades with contributions from a diverse community of researchers in artificial intelligence, databases and programming languages, operations research, management science, and applied mathematics. Today, constraint problems are used to model cognitive tasks in vision, language comprehension, default reasoning, diagnosis, scheduling, temporal and spatial reasoning.
In Constraint Processing, Rina Dechter, synthesizes these contributions, along with her own significant work, to provide the first comprehensive examination of the theory that underlies constraint processing algorithms. Throughout, she focuses on fundamental tools and principles, emphasizing the representation and analysis of algorithms.
·Examines the basic practical aspects of each topic and then tackles more advanced issues, including current research challenges
·Builds the reader's understanding with definitions, examples, theory, algorithms and complexity analysis
·Synthesizes three decades of researchers work on constraint processing in AI, databases and programming languages, operations research, management science, and applied mathematics
Table of Contents
Preface; Introduction; Constraint Networks; Consistency-Enforcing Algorithms: Constraint Propagation; Directional Consistency; General Search Strategies; General Search Strategies: Look-Back; Local Search Algorithms; Advanced Consistency Methods; Tree-Decomposition Methods; Hybrid of Search and Inference: Time-Space Trade-offs; Tractable Constraint Languages; Temporal Constraint Networks; Constraint Optimization; Probabilistic Networks; Constraint Logic Programming; Bibliography

1,739 citations

••

TL;DR: It is shown that several known properties of A* retain their form and it is also shown that no optimal algorithm exists, but if the performance tests are confirmed to cases in which the estimates are also consistent, then A* is indeed optimal.

Abstract: This paper reports several properties of heuristic best-first search strategies whose scoring functions ƒ depend on all the information available from each candidate path, not merely on the current cost g and the estimated completion cost h. It is shown that several known properties of A* retain their form (with the minmax of f playing the role of the optimal cost), which helps establish general tests of admissibility and general conditions for node expansion for these strategies. On the basis of this framework the computational optimality of A*, in the sense of never expanding a node that can be skipped by some other algorithm having access to the same heuristic information that A* uses, is examined. A hierarchy of four optimality types is defined and three classes of algorithms and four domains of problem instances are considered. Computational performances relative to these algorithms and domains are appraised. For each class-domain combination, we then identify the strongest type of optimality that exists and the algorithm for achieving it. The main results of this paper relate to the class of algorithms that, like A*, return optimal solutions (i.e., admissible) when all cost estimates are optimistic (i.e., h ≤ h*). On this class, A* is shown to be not optimal and it is also shown that no optimal algorithm exists, but if the performance tests are confirmed to cases in which the estimates are also consistent, then A* is indeed optimal. Additionally, A* is also shown to be optimal over a subset of the latter class containing all best-first algorithms that are guided by path-dependent evaluation functions.

1,059 citations

••

TL;DR: The paper presents the bucket-elimination framework as a unifying theme across probabilistic and deterministic reasoning tasks and shows how conditioning search can be augmented to systematically trade space for time.

Abstract: Bucket elimination is an algorithmic framework that generalizes dynamic programming to accommodate many problem-solving and reasoning tasks. Algorithms such as directional-resolution for propositional satisfiability, adaptive-consistency for constraint satisfaction, Fourier and Gaussian elimination for solving linear equalities and inequalities, and dynamic programming for combinatorial optimization, can all be accommodated within the bucket elimination framework. Many probabilistic inference tasks can likewise be expressed as bucket-elimination algorithms. These include: belief updating, finding the most probable explanation, and expected utility maximization. These algorithms share the same performance guarantees; all are time and space exponential in the inducedwidth of the problem’s interaction graph. While elimination strategies have extensive demands on memory, a contrasting class of algorithms called “conditioning search” require only linear space. Algorithms in this class split a problem into subproblems by instantiating a subset of variables, called a conditioning set ,o r acutset. Typical examples of conditioning search algorithms are: backtracking (in constraint satisfaction), and branch and bound (for combinatorial optimization). The paper presents the bucket-elimination framework as a unifying theme across probabilistic and deterministic reasoning tasks and show how conditioning search can be augmented to systematically trade space for time. © 1999 Elsevier Science B.V. All rights reserved.

679 citations

••

TL;DR: This paper identifies classes of problems that lend themselves to easy solutions, and develops algorithms that solve these problems optimally by generating heuristic advice based on both the sparseness found in the constraint network and the simplicity of tree-structured CSPs.

Abstract: Many AI tasks can be formulated as constraint-satisfaction problems (CSP), i.e., the assignment of values to variables subject to a set of constraints. While some CSPs are hard, those that are easy can often be mapped into sparse networks of constraints which, in the extreme case, are trees. This paper identifies classes of problems that lend themselves to easy solutions, and develops algorithms that solve these problems optimally. The paper then presents a method of generating heuristic advice to guide the order of value assignments based on both the sparseness found in the constraint network and the simplicity of tree-structured CSPs. The advice is generated by simplifying the pending subproblems into trees, counting the number of consistent solutions in each simplified subproblem, and comparing these counts to decide among the choices pending in the original problem.

562 citations

##### Cited by

More filters

•

01 Jan 1988TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.

Abstract: From the Publisher:
Probabilistic Reasoning in Intelligent Systems is a complete andaccessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertaintyand offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognitionin short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information.
Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

15,671 citations

•

24 Aug 2012

TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

••

TL;DR: In this paper, an updated version of supplementary information to accompany "Quantum supremacy using a programmable superconducting processor", an article published in the October 24, 2019 issue of Nature, is presented.

Abstract: This is an updated version of supplementary information to accompany "Quantum supremacy using a programmable superconducting processor", an article published in the October 24, 2019 issue of Nature. The main article is freely available at this https URL. Summary of changes since arXiv:1910.11333v1 (submitted 23 Oct 2019): added URL for qFlex source code; added Erratum section; added Figure S41 comparing statistical and total uncertainty for log and linear XEB; new References [1,65]; miscellaneous updates for clarity and style consistency; miscellaneous typographical and formatting corrections.

4,873 citations

•

01 Jan 1993

TL;DR: The authors axiomatize the connection between causal structure and probabilistic independence, explore several varieties of causal indistinguishability, formulate a theory of manipulation, and develop asymptotically reliable procedures for searching over equivalence classes of causal models.

Abstract: What assumptions and methods allow us to turn observations into causal knowledge, and how can even incomplete causal knowledge be used in planning and prediction to influence and control our environment? In this book Peter Spirtes, Clark Glymour, and Richard Scheines address these questions using the formalism of Bayes networks, with results that have been applied in diverse areas of research in the social, behavioral, and physical sciences. The authors show that although experimental and observational study designs may not always permit the same inferences, they are subject to uniform principles. They axiomatize the connection between causal structure and probabilistic independence, explore several varieties of causal indistinguishability, formulate a theory of manipulation, and develop asymptotically reliable procedures for searching over equivalence classes of causal models, including models of categorical data and structural equation models with and without latent variables. The authors show that the relationship between causality and probability can also help to clarify such diverse topics in statistics as the comparative power of experimentation versus observation, Simpson's paradox, errors in regression models, retrospective versus prospective sampling, and variable selection. The second edition contains a new introduction and an extensive survey of advances and applications that have appeared since the first edition was published in 1993.

4,863 citations

•

01 Jan 2001TL;DR: The book introduces probabilistic graphical models and decision graphs, including Bayesian networks and influence diagrams, and presents a thorough introduction to state-of-the-art solution and analysis algorithms.

Abstract: Probabilistic graphical models and decision graphs are powerful modeling tools for reasoning and decision making under uncertainty. As modeling languages they allow a natural specification of problem domains with inherent uncertainty, and from a computational perspective they support efficient algorithms for automatic construction and query answering. This includes belief updating, finding the most probable explanation for the observed evidence, detecting conflicts in the evidence entered into the network, determining optimal strategies, analyzing for relevance, and performing sensitivity analysis. The book introduces probabilistic graphical models and decision graphs, including Bayesian networks and influence diagrams. The reader is introduced to the two types of frameworks through examples and exercises, which also instruct the reader on how to build these models. The book is a new edition of Bayesian Networks and Decision Graphs by Finn V. Jensen. The new edition is structured into two parts. The first part focuses on probabilistic graphical models. Compared with the previous book, the new edition also includes a thorough description of recent extensions to the Bayesian network modeling language, advances in exact and approximate belief updating algorithms, and methods for learning both the structure and the parameters of a Bayesian network. The second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision processes and partially ordered decision problems. The authors also provide a well-founded practical introduction to Bayesian networks, object-oriented Bayesian networks, decision trees, influence diagrams (and variants hereof), and Markov decision processes. give practical advice on the construction of Bayesian networks, decision trees, and influence diagrams from domain knowledge. give several examples and exercises exploiting computer systems for dealing with Bayesian networks and decision graphs. present a thorough introduction to state-of-the-art solution and analysis algorithms. The book is intended as a textbook, but it can also be used for self-study and as a reference book.

4,566 citations