scispace - formally typeset
Search or ask a question

Showing papers by "Scot A. Marsters published in 1990"


Journal ArticleDOI
Steven Shak1, Daniel J. Capon1, Renate Hellmiss1, Scot A. Marsters1, Carrie L. Baker1 
TL;DR: Catalytic amounts of rhDNase greatly reduce the viscosity of purulent cystic fibrosis sputum, transforming it within minutes from a nonflowing viscous gel to a flowing liquid.
Abstract: Respiratory distress and progressive lung destruction in cystic fibrosis can be attributed to bacterial persistence and the accumulation of viscous purulent secretions in the airways. More than 30 yr ago it was suggested that the large amounts of DNA in purulent secretions contribute to its viscosity and that bovine pancreatic DNase I could reduce the viscosity. To evaluate the potential clinical utility of recombinant human DNase I (rhDNase) in the treatment of cystic fibrosis, we have cloned, sequenced, and expressed rhDNase. Catalytic amounts of rhDNase greatly reduce the viscosity of purulent cystic fibrosis sputum, transforming it within minutes from a nonflowing viscous gel to a flowing liquid. The reduction in viscosity is associated with a decrease in size of DNA in the sputum. Inhalation of a rhDNase aerosol may be a simple direct approach that will help individuals with cystic fibrosis and other patients with pneumonia or bronchitis to clear their airways of purulent secretions.

684 citations


Journal ArticleDOI
12 Apr 1990-Nature
TL;DR: It is shown that a CD4 immunoadhesin can mediate antibody-dependent cell-mediated cytotoxicity (ADCC) towards HIV-infected cells, although, unlike natural anti-gpl20 antibodies, it does not allow ADCC towards uninfected CD4-expressing cells that have bound soluble gpl20 to the CD4 on their surface.
Abstract: Molecular fusions of CD4, the receptor for human immunodeficiency virus (HIV), with immunoglobulin (termed CD4 immunoadhesins) possess both the gp120-binding and HIV-blocking properties of recombinant soluble CD4, and certain properties of IgG, notably long plasma half-life and Fc receptor binding. Here we show that a CD4 immunoadhesin can mediate antibody-dependent cell-mediated cytotoxicity (ADCC) towards HIV-infected cells, although, unlike natural anti-gp120 antibodies, it does not allow ADCC towards uninfected CD4-expressing cells that have bound soluble gp120 to the CD4 on their surface. In addition, CD4 immunoadhesin, like natural IgG molecules, is efficiently transferred across the placenta of a primate. These observations have implications for the therapeutic application of CD4 immunoadhesins, particularly in the area of perinatal transmission of HIV infection.

273 citations


Journal ArticleDOI
TL;DR: Three amino acid substitutions were found that increase the affinity for gp120 significantly, suggesting that it may be possible to improve the HIV-blocking ability of CD4-based molecules by increasing their gp120 binding affinity.
Abstract: Infection of mononuclear cells by human immunodeficiency virus (HIV) begins with binding of the viral envelope glycoprotein, gp120, to its receptor, CD4. CD4 contains four extracellular immunoglobulin-like domains, the first of which (V1) is sufficient for HIV binding. V1 contains three sequences homologous to the antigen-complementarity-determining regions (CDR1 to -3) of immunoglobulin variable domains. While all three immunoglobulin CDRs are involved in antigen binding, only amino acids within and flanking the CDR2-like region of CD4 have been shown previously to be involved in gp120 binding. To investigate whether other regions in V1 take part in gp120 binding, we substituted alanine for each of 64 amino acids, including all of the hydrophilic residues in this domain. Mutations at four locations outside the CDR2-like sequence (amino acids 29, 59-64, 77-81, and 85) markedly affected gp120 binding, but not the overall structure of V1 as probed with eight conformationally sensitive monoclonal antibodies. Thus, the gp120-binding site of CD4 is not limited to the CDR2-like sequence and consists of several discontinuous segments. Several amino acids were identified that are critical for the conformation of V1; the importance of these residues suggests some differences in the folding of this domain compared to immunoglobulin variable domains. Three amino acid substitutions were found that increase the affinity for gp120 significantly (1.7- to 2-fold individually and 4.2-fold when combined), suggesting that it may be possible to improve the HIV-blocking ability of CD4-based molecules by increasing their gp120 binding affinity.

214 citations