scispace - formally typeset
Search or ask a question
Author

Seeram Ramakrishna

Bio: Seeram Ramakrishna is an academic researcher from National University of Singapore. The author has contributed to research in topics: Nanofiber & Electrospinning. The author has an hindex of 147, co-authored 1552 publications receiving 99284 citations. Previous affiliations of Seeram Ramakrishna include Jinan University & Sun Yat-sen University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a comprehensive review is presented on the researches and developments related to electrospun polymer nanofibers including processing, structure and property characterization, applications, and modeling and simulations.

6,987 citations

MonographDOI
01 Jun 2005
TL;DR: An introduction to electrospinning and nanofibers is given in this article, where the authors introduce the concept of electrospindling and introduce the nanofiber nanostructure.
Abstract: An introduction to electrospinning and nanofibers , An introduction to electrospinning and nanofibers , کتابخانه دیجیتال جندی شاپور اهواز

1,916 citations

Journal ArticleDOI
TL;DR: More studies are required to understand and precisely control the actual mechanics in the formation of various electrospun fibrous assemblies, which will enhance the performance of products made from nanofibres and allow application specific modifications.
Abstract: Although there are many methods of fabricating nanofibres, electrospinning is perhaps the most versatile process. Materials such as polymer, composites, ceramic and metal nanofibres have been fabricated using electrospinning directly or through post-spinning processes. However, what makes electrospinning different from other nanofibre fabrication processes is its ability to form various fibre assemblies. This will certainly enhance the performance of products made from nanofibres and allow application specific modifications. It is therefore vital for us to understand the various parameters and processes that allow us to fabricate the desired fibre assemblies. Fibre assemblies that can be fabricated include nonwoven fibre mesh, aligned fibre mesh, patterned fibre mesh, random three-dimensional structures and sub-micron spring and convoluted fibres. Nevertheless, more studies are required to understand and precisely control the actual mechanics in the formation of various electrospun fibrous assemblies.

1,808 citations

Journal ArticleDOI
TL;DR: The aligned nanofibrous PLLA scaffold could be used as a potential cell carrier in neural tissue engineering after being evaluated in vitro using neural stem cells as a model cell line.

1,764 citations

Journal ArticleDOI
TL;DR: An overview of various biomedical applications of polymer-composite materials reported in the literature over the last 30 years is presented in this paper, where the critical issues and scientific challenges that require further research and development of polymer composite materials for their increased acceptance in the biomedical industry are also highlighted.

1,352 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations