scispace - formally typeset
Search or ask a question

Showing papers by "Seongwon Seo published in 2009"


Journal ArticleDOI
24 Apr 2009-Science
TL;DR: To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage and provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
Abstract: To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.

1,144 citations


Journal ArticleDOI
TL;DR: The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins and to provide a framework for the metabolic reconstruction of other newly sequenced mammalian genomes.
Abstract: Metabolic reconstruction of microbial, plant and animal genomes is a necessary step toward understanding the evolutionary origins of metabolism and species-specific adaptive traits. The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins. The MetaCyc database and PathwayTools software suite were chosen for this work because they are widely used and easy to implement.

41 citations


Journal ArticleDOI
TL;DR: A mechanistic and dynamic model was developed to represent physiological aspects of particle dynamics in the reticulo-rumen (RR) and to predict rate of passage out of the RR (Kp) of forage particles quantitatively and it is concluded that this model can be used to understand the factors that affect the dynamics of particle flow out ofthe RR and predict Kp of particles out ofThe RR in dairy cattle.

35 citations


Journal ArticleDOI
TL;DR: In this article, the gas profiles of carbohydrate fractions were generated using a subtraction approach and a curve was fitted with a single-pool exponential equation with a discrete lag to obtain kinetic parameters that can be used as inputs for modern nutritional models.
Abstract: The current ruminant feeding models require parameterization of the digestion kinetics of carbohydrate fractions in feed ingredients to estimate the supply of nutrients from a ration. Using an automated gas production technique, statistically welldefined digestion rate of carbohydrate, including soluble carbohydrate, can be estimated in a relatively easy way. In this study, the gas production during in vitro fermentation was measured and recorded by an automated gas production system to investigate degradation kinetics of carbohydrate fractions of a wide range of ruminant feeds: corn silage, rice straw, corn, soybean hull, soybean meal, and cell mass from lysine production (CMLP). The gas production from un-fractionated, ethanol insoluble residue and neutral detergent insoluble residue of the feed samples were obtained. The gas profiles of carbohydrate fractions on the basis of the carbohydrate scheme of the Cornell Net Carbohydrate and Protein System (A, B1, B2, B3 and C) were generated using a subtraction approach. After the gas profiles were plotted with time, a curve was fitted with a single-pool exponential equation with a discrete lag to obtain kinetic parameters that can be used as inputs for modern nutritional models. The fractional degradation rate constants (Kd) of corn silage were 11.6, 25.7, 14.8 and 0.8%/h for un-fractioned, A, B1 and B2 fractions, respectively. The values were statistically well estimated, assessed by high t-value (>12.9). The Kd of carbohydrate fractions in rice straw were 4.8, 21.1, 5.7 and 0.5%/h for un-fractioned, A, B1 and B2 fractions, respectively. Although the Kd of B2 fraction was poorly defined with a t-value of 4.4, the Kd of the other fractions showed tvalues higher than 21.9. The un-fractioned corn showed the highest Kd (18.2%/h) among the feeds tested, and the Kd of A plus B1 fraction was 18.7%/h. Soybean hull had a Kd of 6.0, 29.0, 3.8 and 13.8%/h for un-fractioned, A, B1 and B2, respectively. The large Kd of fraction B2 indicated that NDF in soybean hull was easily degradable. The t-values were higher than 20 except for the B1 fraction (5.7). The estimated Kd of soybean meal was 9.6, 24.3, 5.0%/h for un-fractioned, A and B1 fractions, respectively. A small amount of gas (5.6 ml at 48 ho of incubation) was produced from fermentation of CMLP which contained little carbohydrate. In summary, the automated gas production system was satisfactory for the estimation of well defined (t-value >12) kinetic parameters and Kd of soluble carbohydrate fractions of various feedstuffs that supply mainly carbohydrate. The subtraction approach, however, should be applied with caution for some concentrates, especially those which contain a high level of crude protein since nitrogen-containing compounds can interfere with gas production.

19 citations